APPLICATION FOR FINANCIAL ASSISTANCE Revised 4/99

IMPORTANT: Please consult the "Instr	"Uctions for Completing the Project Applicat	ion" for againtance in
completion of this form.		ion for assistance in
SUBDIVISION: Village of Fairfax, O	Ohio Co	ODE# <u>061- 25942</u>
DISTRICT NUMBER: 2 COUN	TY: <u>Hamilton</u> DATE 09 /19/08	
CONTACT: Jennifer Kaminer, Villag	te Administrator PHONE # (513) 5	27-6503
THE PROJECT CONTACT PERSON SHOULD BE THE INDIVIDUA AND SELECTION PROCESS AND WHO CAN BEST ANSWER OR CE FAX: (513) 271-4178	L WHO WILL BE AVAILABLE ON A DAY-TO-DAY BASIS DURING COORDINATE THE RESPONSE TO QUESTIONS) E-MAIL: jkamine	THE APPLICATION REVIEW
PROJECT NAME: Wooste	R PIKE PROJECT	
SUBDIVISION TYPE (Check Only 1) 1. County2. City3. Township X 4. Village5. Water/Sanitary District (Section 6119 O.R.C.)	PROJECT Check Largest Cor X_1. Road 2. Bridge/Cu 3. Water Sup 4. Wastewate 5. Solid Wast 6. Stormwate 6. Sto	nponent) Ivert oply er te
TOTAL PROJECT COST:\$\frac{4.722.744}{2, 752, 697}	UNDING REQUESTED:\$ 3-107.182	
DISTR To be complete	ICT RECOMMENDATION ed by the District Committee ONLY	2008 SEP 19
GRANT:\$ <u>1, 403, 875</u> LC SCIP LOAN: \$ RATE: RLP LOAN: \$ RATE:	DAN ASSISTANCE:\$	SEF U
SCIP LOAN: \$RATE:RLP LOAN: \$RATE:		5
(Check Only 1) State Capital Improvement Program Local Transportation Improvements Program	yrsSmall Government Program	FIGHEER PM 3: 08
FOR	OPWC USE ONLY	مته. ا
PROJECT NUMBER: C/C Local Participation % DPWC Participation % Project Release Date: DPWC Approval:	APPROVED FUNDING: \$	% years
· •	SCIP Loan RLP Lo	ंचङ् अ श

Since this project will be an LPA project through the Ohio Department of Transportation, the Project Development Process (PDP) will need to be followed. We are anticipating this project will be classified as a Minor Project and will follow the 10 step process. We have performed a majority of the public involvement per ODOT standards, but the environmental studies in the Minor PDP still need to be performed.

1.2	PROJECT FINANCIAL RESOURCES:
	(Round to Nearest Dollar and Percent)

		DOLLARS	%
a.)	Local In-Kind Contributions	\$ <u>.00</u>	,c
b.)	Local Revenues	\$ <u>-322.516.00</u> 65 ₁ 63	3 ^{DC}
c.)	Other Public Revenues ODOT Rural Development OEPA OWDA CDBG OTHER CMAQ	\$	50 <u>43%</u>
d.)	SUBTOTAL LOCAL RESOURCES: OPWC Funds 1. Grant 2. Loan 3. Loan Assistance	\$,875-8K
	SUBTOTAL OPWC RESOURCES:	\$ <u>-2,407,182.00</u> 1,403,8	75 <u>51%</u>
e.)	TOTAL FINANCIAL RESOURCES:	\$ <u>-4.732,714.00</u> 2,752,	697 <u>100%</u>

1.3 AVAILABILITY OF LOCAL FUNDS:

Attach a statement signed by the <u>Chief Financial Officer</u> listed in section 5.2 certifying <u>all local share</u> funds required for the project will be available on or before the earliest date listed in the Project Schedule section.

ODOT PID#	Sale Date:
STATUS: (Check one)	

Traditional

X Local Planning Agency (LPA) State Infrastructure Bank

2.0 PROJECT INFORMATION

If project is multi-jurisdictional, information must be consolidated in this section. This project is in the Village of Fairfax and in the Village of Mariemont. The Village of Fairfax is taking the lead on the project and has received preliminary approvals from The Village of Mariemont, the Ohio Department of Transportation as well as the Southwest Ohio Regional Transit Authority.

2.1 PROJECT NAME: Wooster Pike Project

2.2 BRIEF PROJECT DESCRIPTION - (Sections A through C):

A: SPECIFIC LOCATION:

The main project starts at the western side at the intersection of US 50/ Wooster Pike and Meadowlark Lane and proceeds in an easterly direction along Wooster Pike and ends at the Mariemont Corporation limit. In addition, work will be performed on Grace Avenue, Southern Avenue, Germania Avenue, Lonsdale Avenue, Watterson Road, Simpson Road, Camden Avenue, Carlton Avenue and Belmont Avenue.

PROJECT ZIP CODE: 45227

B: PROJECT COMPONENTS:

The Wooster Pike Project in the Village of Fairfax has the components of a 'Road Diet', Access Management including Access Roads, Signal Upgrades, safety upgrades to comply with the Americans for Disability Act, Utility Relocation, Transit Upgrades and Traffic Calming. The majority of these improvements will be along the US 50/Wooster Pike alignment.

C: PHYSICAL DIMENSIONS / CHARACTERISTICS:

US 50 in the Village of Fairfax has been designated as a Central Business District and thus the speed limit will be reduced to 25 MPH on Wooster Pike between Southern Avenue and the Mariemont Corporation Line. The project length is 0.56 miles. The project will take the existing 40' of pavement from face of curb to face of curb and convert it from four-10' lanes to 3-12' lanes with a new gutter and curb replacement section. The storm water drainage will only be rebuilt as necessary. The sidewalk and curb ramps will be brought up to ADA standards as they are currently deficient. The above ground utility poles will be condensed to one side of the pavement, thus eliminating over 80% of the utility poles. No underground utility relocation is anticipated with the project. Bus stop pullovers and an unloading/loading zone will be constructed to encourage these functions to be performed out of the travel lane. A transit layover area has been added to the project area. The signals, which are decades old, have been improved from pretimed signals that had phases that were unused during peak hours, to two-phase actuated signals, thus eliminating delays and frustration of the drivers. Five residential streets will be cul-de-sac'd to eliminate cut-through traffic. Speed humps will be installed on residential streets that will remain open to deter additional cut-through Watterson Avenue is a primary residential cut-through readway. Thus, a roundabout will be constructed at the major intersection of Watterson Avenue and Bancroft Avenue to provide traffic calming and geometric improvements at the intersection where through movements of Watterson Avenue is skewed at a 47 degree at the intersection. The cul-de-sac on the streets will not occur at the Wooster Pike intersection, but rather this will occur at approximately one property north, thus giving the business property continued access to Wooster Pike. However, if these businesses have access to the street 'stubs', then their driveways on Wooster Pike will be closed and

at best, a right-in and/or a right-out will be provided. New driveways for businesses will be to a standard width. Both driveways and the 'stub' streets will be realigned to intersect Wooster Pike at 90 degrees. As a result of public meetings held the summer of 2008, three parcels will be purchased to make way for the Spring Street Extension Access Road on the north side of the corridor. This Access Road will provide access to six business parcels that will have their access on Wooster Pike closed, as well as provide replacement parking for on-street parking that is being removed due to the project. One additional parcel will be purchased to provide access to the businesses along the south side of the corridor. Additional property owners have agreed that based on future redevelopments of adjacent parcels, their access will be closed on Wooster Pike and cross easements will be put in place for shared access points. Landscaping will be added along the project corridor and to the cul-de-sac'd streets to provide screening between the residential and Funding for the landscaping between the US 50/Wooster business districts. Pike/Meadowlark Lane intersection and the US50/Wooster Pike/ Southern Avenue intersection has already been obtained.

D: DESIGN SERVICE CAPACITY:

Detail current service capacity vs. proposed service level.

The total delay for the existing AM and PM peaks for both the US 50/ Wooster Pike and Meadowlark Lane US 50/ Wooster Pike and Watterson Road intersections is 72.5 seconds of delay. The total delay for the proposed AM and PM peaks for both intersections is 69.9 seconds of delay. This is after going from a four-lane section with two lanes in each direction, to a three lane section with one lane in each direction.

Road or Bridge: Current ADT 21,759 (ODOT) Year: 2005 Projected ADT: Year
Water/Wastewater: Based on monthly usage of 7,756 gallons per household, attach current rate ordinance. Current Residential Rate: \$ Proposed Rate: \$
Stormwater: Number of households served:

2.3 USEFUL LIFE / COST ESTIMATE: Project Useful Life: 25 Years.

Attach <u>Registered Professional Engineer's statement</u>, with <u>original seal and signature</u> confirming the project's useful life indicated above and estimated cost.

3.0 REPAIR/REPLACEMENT or NEW/EXPANSION:

4.0 PROJECT SCHEDULE: *

		BEGIN DATE	END DATE
4.1	Engineering/Design:	01/01/07	05/01/10
4.2	Bid Advertisement and Award:	05/01/10	06/15/10
4.3	Construction:	07/01/10	12/01/11
4.4	Right-of-Way/Land Acquisition:	07/01/10	12/31/10

We understand that our project scheduled, which is determined by the limitations of our CMAQ funding guidelines, puts this project beyond the funding cycle of this round of projects. However, we are requesting funding acceptance now so that we will have a fully funded project before the project is programmed through ODOT, which is anticipated in January, 2009.

5.0 APPLICANT INFORMATION:

5.1 CHIEF EXECUTIVE

OFFICER Theodore W. Shannon, Jr.

TITLE Mayor

STREET 5903 Hawthorne Ave.

CITY/ZIP Cincinnati, OH 45227 PHONE (513) 527 -6504

FAX (513) <u>527</u> - 6504 FAX (513) <u>271</u> - 4178 E-MAIL tsha@fuse.net

5.2 CHIEF FINANCIAL

OFFICER Walter Raines
TITLE Clerk-Treasurer

STREET 5903 Hawthorne Ave.

CITY/ZIP Cincinnati, OH 45227

PHONE (513) 527-6505 FAX (513) 271-4178

E-MAIL wraines@fuse.net

5.3 PROJECT MANAGER Jennifer Kaminer TITLE Administrator

STREET 5903 Hawthorne Ave. CITY/ZIP Cincinnati, OH 45227

PHONE (513) 527-6503
FAX (513) 271-4178
E-MAIL jkaminer@fuse.net

Changes in Project Officials must be submitted in writing from the CEO.

^{*} Failure to meet project schedule may result in termination of agreement for approved projects. Modification of dates must be requested in writing by the CEO of record and approved by the commission once the Project Agreement has been executed. The project schedule should be planned around receiving a Project Agreement on or about July 1st.

6.0 ATTACHMENTS/COMPLETENESS REVIEW:

Confirm in the blocks [] below that each item listed is attached.

- ľΧΙ A certified copy of the legislation by the governing body of the applicant authorizing a designated official to sign and submit this application and execute contracts. This individual should sign under 7.0, Applicant Certification, below.
- ľŽI A certification signed by the applicant's chief financial officer stating all local share funds required for the project will be available on or before the dates listed in the Project Schedule section. If the application involves a request for loan (RLP or SCIP), a certification signed by the CFO which identifies a specific revenue source for repaying the loan also must be attached. Both certifications can be accomplished in the same letter.
- M A registered professional engineer's detailed cost estimate and useful life statement, as required in 164-1-13, 164-1-14, and 164-1-16 of the Ohio Administrative Code. Estimates shall contain an engineer's original seal or stamp and signature.
- Νī A cooperation agreement (if the project involves more than one subdivision or district) which identifies the fiscal and administrative responsibilities of each participant.
- N/A] Projects which include new and expansion components and potentially affect productive farmland should include a statement evaluating the potential impact. If there is a potential impact, the Governor's Executive Order 98-VII and the OPWC Farmland Preservation Review Advisory apply.
 - [X]Capital Improvements Report: (Required by O.R.C. Chapter 164.06 on standard form)
 - **[X**] Supporting Documentation: Materials such as additional project description, photographs, economic impact (temporary and/or full time jobs likely to be created as a result of the project), accident reports, impact on school zones, and other information to assist your district committee in ranking your project. Be sure to include supplements which may be required by your local District Public Works Integrating Committee.

7.0 APPLICANT CERTIFICATION:

The undersigned certifies that: (1) he/she is legally authorized to request and accept financial assistance from the Ohio Public Works Commission; (2) to the best of his/her knowledge and belief, all representations that are part of this application are true and correct; (3) all official documents and commitments of the applicant that are part of this application have been duly authorized by the governing body of the applicant; and, (4) should the requested financial assistance be provided, that in the execution of this project, the applicant will comply with all assurances required by Ohio Law, including those involving Buy Ohio and prevailing wages.

Applicant certifies that physical construction on the project as defined in the application has NOT begun, and will not begin until a Project Agreement on this project has been executed with the Ohio Public Works Commission. Action to the contrary will result in termination of the agreement and withdrawal of Ohio Public Works Commission funding of the project.

Certifying Representative (Type or Print Name and Title)

THEODORE W SHAWNON ITZ MAYOR

Signature/Date Signed

Signature/Date Signal
Theodore W. Shannon J. 6

BARR & PREVOST

ENGINEERING-TESTING

9420 Towne Square Ave. Suite 22 Cincinnati, Ohio 45242

September 18, 2008

Ohio Public Works Commission District 2 Hamilton County, Ohio

RE: WOOSTER PIKE PROJECT STATEMENT OF USEFUL LIFE

As required by Chapter 164-1-13 of the Ohio Administrative Code, I hereby certify that the Wooster Pike Project will have a useful life of at least 25 years.

CONSTRUCTION COSTS:

The opinion of Project Construction Costs is based on current unit price experience with a 10% escalation factor and is subject to adjustment upon completion of detailed plans and receipt of an acceptable proposal by a qualified contractor.

Respectfully,

Caroline F. Duffy, PE Senior Traffic Engineer

Caroline Duffy, PE

Barr & Prevost

5903 Hawthorne Avenue Fairfax, Ohio 45227 Fax (513) 271-4178

Mayor, Theodore Shannon Telephone (513) 527-6504

"Working Together To Build A Better Community"

Mr. William W. Brayshaw, Chairman District 2 Integrating Committee Hamilton County Engineer's Office 10480 Burlington Road Cincinnati, OH 45231

Re: OPWC Funding – Round 23

Dear Mr. Brayshaw:

Please accept this letter as indication that the Village of Fairfax will make available any necessary local funds for the Wooster Pike Project.

It is our intent to primarily use Federal CMAQ (Congestion Mitigation Air Quality) funds previously awarded to support the local share requirement of this project. Any additional funds will be supplemented by the Village of Fairfax General Fund, or other revenue, as allowed by law.

Sincerely,

Walter Raines

Clerk-Treasurer

Village of Fairfax

September 15, 2008

Cost Estimate Wooster Pike Study Village of Fairfax, Ohio

ITEM DESCRIPTION	UNIT	U	NIT COST	QUANTITY	TOTAL COST
REMOVALS		Ava Li	nit Price Est.		
Pavement Removed	6- 4				
Curb Removed	Sq. Yard Lin. Ft.	\$	7,8D 3,85	13936 8160	\$ 108,701 \$ 31,416
Catch Basin Removed	Each	5	290.00	40	\$ 31,416 \$ 11,600
Walk Removed	Sq. Ft.	s	1.50	27403	\$ 41,105
	nikalik pintin yintas		way Subtotal		.,,,
ROADWAY					
			nit Price Est.		
Clearing and Grubbing 4" Concrete Walk	Lump	<u>\$</u>	25,000.00	1	\$ 25,000
Curb Ramo	Sq. Ft. Sq. Ft.	\$ 5	6,00 450.00	35378 28	\$ 212,268
Combination Curb and Gutter, Type 2	Lin. FL	\$	25.00	9245	\$ 12,600 \$ 231,125
Curb , Type 6	Sq. FL	- S	20,00	8330	\$ 156,600
Retaining Walt	Sq. Ft.	\$	34.25	5100	\$ 174,675
Pedestrian Handrall	Lin. Ft.	\$	175.00	340	5 59,500
Speed Hump	Each	\$	2,500.00	12	\$ 30,000
Bus Shelter	Each	<u> </u>	10,000,00	1	\$ 10,000
DRAINAGE		Road	way Subtotal	\$ 921,768.00	
DITAINAGE		A 11	ліt Price Est.	· · · · · · · · · · · · · · · · · · ·	
24" Conduit, Type B	Lin. FL	S S	71.00	3400	\$ 241,400
Catch Basins, No. 3	Each	\$	2,200.00	40	\$ 98,000
	HARRA PENGENCON (HAR		age Subtotal		30,000
EARTHWORK					
		Avg U	nit Price Est		
Embankment	Cu. Yard	<u>\$</u>	13,00	1286	\$ 16,719
Topsoil Lime	Cu. Yard Acre	\$	16,35	644	\$ 10,529
Commercial Fertilizer	Ton	\$ S	81.75 382.00	0.1 0.70	\$ 8
Waler	M Ga.	\$	1.50	14	\$ 267 \$ 21
Sodding, Reinforced	Sq. Yard	\$	B.75	7926	S 69,353
Soil Analysis Test	Each	\$	110.00	2	\$ 220
lrigation	Lump	S	100,000,00	1	\$ 100,000
	1000/100/100/100/100/100/100/100/100/10	Earthy	vork Subtotal	\$ 197,116.48	
TEMPORARY SOIL AND SEDIMENT CONTROL					
Seeding and Mulching	Sq. Yard		nit Price Est. 1,00	5000	
Perimeter Filter Fabric Fence	Lin. Ft.	\$	2.00	1500	\$ 5,000 \$ 3,000
Commercial Fertilizer	Ton	\$	382.00	0.7	\$ 267
Temporary Inlet Protection Filter Fabric Fence	Lin. Ft.	\$	2.50	700	\$ 1,750
Repair Seeding and Mulching	Sq. Yard	\$	0.55	250	\$ 138
Waler	M Ga.	\$	1.50 [27	\$ 41
	Temporary Soil a	nd Sedir	nent Control	\$ 10,195,40	
PAVEMENT	Militari Alexanti Militari SI	ibtotal		CERTIFORT CONTRACTORS	
5 AT CAULAIT		Ave 15	nil Price Est.		
Microsurface	Sq. Yard	\$	2.00	14957.00	\$ 29,914
Asphalt Concrete Surface Course, Type 2, PG64-28	Cu. Yard	\$	110,00	405.20	\$ 44,572
ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 2, PG64-22	Cu, Yard	\$	250.00	587.28	S 141,819
Tack Coal	Gallon	\$	1.40	466.67	\$ 653
ASPHALT CONCRETE BASE, PG64-22 Aggregate Base	Cu. Yard	\$	275,00	810.72	\$ 222,947
JAN 1989 Dese	Cu, Yard	\$ Daves	110.00 ent Subtotal	608,04	\$ 66,884
MAINTENANCE OF TRAFFIC	1945 H 1851 H 1851 H 1851 H 1851 H 1851	Laganti	IGHT SUDIDIGIA	\$ 606,788.83	
MARITUAL DE TION 110		Availe	nit Price Est.	***************************************	
Maintaining Traffic	Lump	\$	20,000,00	1	\$ 20,000
aw Enforcement Officer with Patrol Car	Hour	5	40.00	130	S 5,200
	Maintenar	ce of Tra	ffic Subtotal		
TRAFFIC CONTROL					
			it Price Est.		
Ground Mounted Support, No. 3 Post Removal of Ground-Mounted Post Support and Discosal	Lin, Ft.	\$	7.40	700	\$ 5,180
Removal of Ground-Mounted Fost Support and Disposal	Each Each	\$ \$	13.65 11.65	60 60	\$ 819 \$ 699
Sign, Double Faced, Street Name	Each	\$	110.00	14	
Street Name Sign Support, No. 3 Post	Lin. Ft.	\$	10,35	150	\$ 1,540 \$ 1,553
Sign, Fiet Sheet	Sq. FL	S	12.15	2160	\$ 26,244
Center Line, Type 2, 4" Double Yellow	Mile	\$	1,100.00	0,57	\$ 627
Channel Line, Type 2, 4" White	Mile	\$	2,100.00	0,25	\$ 525
Edge Line, Type 2, 4" White Stop Line, 24"	Mile	5	2,100.00	0.06	\$ 126
Crosswalk Line	Lin, Ft.	\$	7.75	228	\$ 1,767
ransverse/Diagonal Line	Lin. Ft.	\$	5.45 3.90	890 285	\$ 4,796 \$ 1.112
ane Arrow	Each	\$	81.75	36	\$ 2,943

Cost Estimate Wooster Pike Study Village of Fairfax, Ohio

ITEM DESCRIPTION TRAFFIC SIGNAL AND LIGHTING Connector Kit, Type II Light Pole, Decorative Light Pole, Decorative Light Pole Foundation, 24" x 6" Deep 1-1/2" Duct Cable with Times No. 4 AWG 5000 Volt Cables No. 4 AWG 5000 Volt Distribution Cable No. 10 AWG Pole and Bracket Cable Luminaire, Decorative: Type III, 250W, HPS, 480V Special - Plastic Caution Tape Conduit, 2", 713.04 Conduit, 3", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 5", 713.04 Conduit, 5", 713.04 Conduit, 6", 713.04 Conduit, 6", 713.04 Conduit, 6", 713.04 Conduit, 7", 713.04 Conduit, 8", 713.04 Conduit, 8", 713.04 Conduit, 9", 713.04 Con	Each Each Lin. Ft. Each Each Each Each Sq. Ft. Each Each Each Each	Avg \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Unit Price Est. 65.50 3,500.00 1,200.00 1,200.00 3.25 2.25 1.00 500.00 0.35 9.50 11.50 14.50 27.25 5.00 600.00 900.00	60 30 30 4500 450 600 30 4500 400 400 400 300 6000 24	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3,930 105,000 35,000 14,625 1,013 600 15,000 1,575 3,800 4,600
Connector Kit, Type II Light Pole, Decorative Light Pole Foundation, 24" x 6" Deep 1-1/2" Duct Cable with Three No. 4 AWG 5000 Volt Cables No. 4 AWG 5000 Volt Distribution Cable No. 10 AWG Pole and Bracket Cable Luminaire, Decorative: Type III, 250W, HPS, 480V Special - Plastic Caution Tape Conduit, 2", 713.04 Conduit, 3", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 3", 713.04 Conduit, 500, 71	Each Each Lin. Ft. Each Each Each Sq. Ft. Each Each Each Each Each Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	65.50 3,500.00 1,200.00 3.25 2.25 1.00 500.00 0.35 9.50 11.50 27.25 5.00 800.00	30 30 4500 450 600 30 4500 400 400 400 300 6000 24	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	105,000 36,000 14,625 1,013 600 15,000 1,575 3,800 4,600
Light Pole, Decorative Light Pole Foundation, 24" x 6' Deep 1-1/2" DuC cable with Three No. 4 AWG 5000 Volt Cables No. 4 AWG 5000 Volt Distribution Cable No. 10 AWG Pole and Bracket Cable Luminaire, Decorative: Type III, 250W, HPS, 480V Special - Plastic Caution Tape Conduit, 2", 713.04 Conduit, 3", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.05 Conduit, Jacked or Drilled Trench Pull Box, 725.08, 18" Pult Box, 725.08, 24" Ground Rod Power Service Sign, Flat Shoet Pedestrian Signal Head, Type A2 Vehicular Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Covering of Pedestrian Signal Head Pedestrian Pushbution Loop Detector Unit Signal Cable, 7 Conductor. No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Signal Support Foundation Pedestal Foundation Pedestal Foundation	Each Each Lin. Ft. Each Each Each Sq. Ft. Each Each Each Each Each Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	65.50 3,500.00 1,200.00 3.25 2.25 1.00 500.00 0.35 9.50 11.50 27.25 5.00 800.00	30 30 4500 450 600 30 4500 400 400 400 300 6000 24	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	105,000 36,000 14,625 1,013 600 15,000 1,575 3,800 4,600
Light Pole, Decorative Light Pole Foundation, 24" x 6' Deep 1-1/2" DuC cable with Three No. 4 AWG 5000 Volt Cables No. 4 AWG 5000 Volt Distribution Cable No. 10 AWG Pole and Bracket Cable Luminaire, Decorative: Type III, 250W, HPS, 480V Special - Plastic Caution Tape Conduit, 2", 713.04 Conduit, 3", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.05 Conduit, Jacked or Drilled Trench Pull Box, 725.08, 18" Pult Box, 725.08, 24" Ground Rod Power Service Sign, Flat Shoet Pedestrian Signal Head, Type A2 Vehicular Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Covering of Pedestrian Signal Head Pedestrian Pushbution Loop Detector Unit Signal Cable, 7 Conductor. No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Signal Support Foundation Pedestal Foundation Pedestal Foundation	Each Each Lin. Ft. Each Each Each Sq. Ft. Each Each Each Each Each Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3,500.00 1,200.00 3.25 2.25 1.00 500.00 0.35 9.50 11.50 27.25 5.00 800.00	30 30 4500 450 600 30 4500 400 400 400 300 6000 24	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	105,000 35,000 14,625 1,013 600 15,000 1,575 3,800 4,600
Light Pole Foundation, 24" x 6' Deep 1-12" Duct Cable with Three No. 4 AWG 5000 Volt Cables No. 4 AWG 5000 Volt Distribution Cable No. 10 AWG Pole and Bracket Cable Luminaire, Decorative: Type III, 250W, HPS, 480V Special - Plastic Caution Tape Conduit, 2", 713.04 Conduit, 3", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 3acked or Drilled Trench Pull Box, 725.08, 18" Pull Box, 725.08, 24" Ground Rod Power Service Sign, Flat Sheet Pedastrian Signal Head, Type A2 Vehicular Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Pedastrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor, No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Loop Power Service Signal Support Foundation Pedestal Foundation	Each Lin. Ft. Lin. Ft. Lin. Ft. Each Lin. Ft. Lin. Ft. Lin. Ft. Lin. Ft. Lin. Ft. Lin. Ft. Each Each Each Sq. Ft. Each Each Each Each Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,200.00 3.25 2.25 1.00 500.00 0.35 9.50 11.50 14.50 27.25 5.00 600.00 900.00	30 4500 450 600 30 4500 400 400 400 300 5000 24	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	35,000 14,625 1,013 600 15,000 1,575 3,800 4,600
1-1/2" Duct Cable with Three No. 4 AWG 5000 Volt Cables No. 4 AWG 5000 Volt Distribution Cable No. 10 AWG Pole and Bracket Cable Luminaire, Decorative: Type III, 250W, HPS, 480V Special - Plastic Caution Tape Conduit, 2", 713.04 Conduit, 3", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 500, 18" Pull Box, 725.08, 18" Pull Box, 725.08, 24" Ground Rod Power Service Sign, Flat Sheat Pedastrian Signal Head, Type A2 Vehicular Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Pedestrian Signal Head Covering of Pedestrian Signal Head Pedastrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor, No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Lin, Ft. Lin, Ft. Lin, Ft. Each Lin, Ft. Lin, Ft. Lin, Ft. Lin, Ft. Lin, Ft. Lin, Ft. Each Each Each Sq. Ft. Each Each Each Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3.25 2.25 1.00 500.00 0.35 9.50 11.50 14.50 27.25 5.00 800.00	4500 450 600 30 4500 400 400 400 300 6000	5 5 5 5 5 5 5	14,625 1,013 600 15,000 1,576 3,800 4,600
No. 10 AWG 5000 Volt Distribution Cable No. 10 AWG Pole and Bracket Cable Luminaire, Decorative: Type III, 250W, HPS, 480V Special - Plastic Caution Tape Conduit, 2", 713.04 Conduit, 3", 713.04 Conduit, 4", 713.04 Conduit, Jacked or Drilled Trench Pull Box, 725.08, 18" Pull Box, 725.08, 24" Ground Rod Power Service Sign, Flat Sheet Pedastrian Signal Head, Type A2 Vehicular Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Pedestrian Signal Head Covering of Detector Lead-in Cable Detector Lead-in Cable Detector Lead-in Cable Detector Lead-in Cable Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Lin, Ft. Lin, Ft. Each Lin, Ft. Each Each Each Sq. Ft. Each Each Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2.25 1.00 500.00 0.35 9.50 11.50 14.50 27.25 5.00 800.00 900.00	450 600 30 4500 400 400 400 300 6000	\$ \$ \$ \$ \$ \$ \$	1,013 600 15,000 1,575 3,800 4,600
Luminaire, Decorative: Type III, 250W, HPS, 480V Special - Plastic Caution Tape Conduit, 2*, 713.04 Conduit, 3*, 713.04 Conduit, 4*, 713.04 Conduit, Jacked or Drilled Trench Pull Box, 725.08, 18* Pult Box, 725.08, 24* Ground Rod Power Service Sign, Flat Sheet Pedastrian Signal Head, Type A2 Vehicular Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12* Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Pedastrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor, No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Padestal Foundation	Lin. Ft. Each Lin. Ft. Lin. Ft. Lin. Ft. Lin. Ft. Lin. Ft. Lin. Ft. Each Each Each Sq. Ft. Each Each Each	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.00 500,00 0.35 9.50 11.50 27.25 5.00 800.00	600 30 4500 400 400 400 300 6000 24	\$ \$ \$ \$ \$ \$	600 15,000 1,575 3,800 4,600
Special - Plastic Caution Tape Conduit, 2", 713.04 Conduit, 3", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, 4", 713.04 Conduit, Jacked or Drilled Trench Pull Box, 725.08, 18" Pull Box, 725.08, 24" Ground Rod Power Service Sign, Flat Sheet Pedestrian Signal Head, Type A2 Vehicular Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Vehicular Signal Head Pedestrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor, No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Lead-in Cable Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Each Lin. FL Lin. FL Lin. FL Lin. FL Lin. FL Each Each Each Sq. FL Each Each Each Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	500,00 0.35 9.50 11.50 14.50 27.25 5.00 800,00 900,00	30 4500 400 400 400 300 6000	\$ \$ \$ \$ \$	15,000 1,575 3,800 4,600
Conduit, 2", 713.04 Conduit, 3", 713.04 Conduit, 4", 713.04 Conduit, 3", 713.04 Conduit, Jacked or Drilled Trench Pull Box, 725.08, 18" Pult Box, 725.08, 24" Ground Rod Power Service Sign, Flat Sheet Pedastrian Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedastrian Signal Head Pedastrian Pushbutton Loop Delector Unit Signal Cable, 7 Conductor, No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedastal Foundation	Lin, FL Lin, FL Lin, FL Lin, FL Lin, Ft Lin, Ft Each Each Each Each Sq. FL Each Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.35 9.50 11.50 14.50 27.25 5.00 800.00 900.00	4500 400 400 400 300 6000	\$ \$ \$ \$	1,575 3,800 4,600
Conduit, 4", 713,04 Conduit, 4", 713,04 Conduit, 4", 713,04 Conduit, Jacked or Drilled Trench Pull Box, 725,08, 24" Ground Rod Power Service Sign, Flat Sheet Pedestrian Signal Head, Type A2 Vehicular Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Covering of Pedestrian Signal Head Covering of Pedestrian Signal Head Pedastrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor, No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Lin. FL Lin. FL Lin. FL Lin. Ft. Lin. Ft. Each Each Each Each Sq. Ft. Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9.50 11.50 14.50 27.25 5.00 800.00 900.00	400 400 400 300 6000 24	\$ \$ \$	3,800 4,600
Conduit, 4*, 713.04 Conduit, Jacked or Drilled Trench Pull Box, 725.08, 18" Pult Box, 725.08, 24" Ground Rod Power Service Sign, Flat Sheet Pedastrian Signal Head, Type A2 Vehicular Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Pedastrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor, No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Un. Ft. Un. Ft. Un. Ft. Lin. Ft. Each Each Each Sq. Ft. Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	11.50 14.50 27.25 5.00 800.00 900.00	400 400 300 6000 24	\$ \$	4,600
Conduit, Jacked or Drilled Trench Pull Box, 725.08, 18" Pull Box, 725.08, 24" Ground Rod Power Service Sign, Flat Sheat Pedastrian Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Covering of Pedestrian Signal Head Pedastrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor, No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Lin. Ft. Lin, Ft. Lin. Ft. Each Each Each Each Each Each Each Each	\$ \$ \$ \$ \$ \$	14.50 27.25 5.00 800.00 900.00	400 300 6000 24	\$	
Trench Pull Box, 725.08, 18" Pull Box, 725.08, 24" Ground Rod Power Service Sign, Flat Sheet Pedastrian Signal Head, Type A2 Vehicular Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Covering of Pedestrian Signal Head Pedastrian Pushbutton Loop Delector Unit Signal Cable, 7 Conductor, No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Lin. Ft. Each Each Each Each Sq. Ft. Each Each Each Each Each	\$ \$ \$ \$ \$	27.25 5.00 800.00 900.00	300 6000 24	\$	
Pull Box, 725.08, 18" Pull Box, 725.08, 24" Ground Rod Power Service Sign, Flat Sheet Pedestrian Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Pedestrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor. No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Lin. Ft. Each Each Each Each Sq. Ft. Each Each Each Each Each	\$ \$ \$ \$	5,00 800.00 900,00	6000 24		8,175
Pult Box, 725.08, 24" Ground Rod Power Service Sign, Flat Sheet Pedastrian Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedastrian Signal Head Pedastrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor: No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Each Each Each Each Sq. Ft. Each Each Each Each Each	\$ \$ \$ \$	800.00 900,00	24		30,000
Ground Rod Power Service Sign, Flat Sheat Pedastrian Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Pedastrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor. No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Each Each Sq. Ft. Each Each Each Each	\$ \$ \$	900,00		\$	19,200
Power Service Sign, Flat Sheet Pedestrian Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Pedestrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor, No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Each Sq. Ft. Each Each Each Each	\$ \$ \$	130.00	3	\$	2,700
Sign, Flat Sheet Pedastrian Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Pedastrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor. No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Each Sq. Ft. Each Each Each Each	\$	144.44	33	5	4,290
Pedastrian Signal Head, Type A2 Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedastrian Signal Head Pedastrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor: No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedastal Foundation	Sq. Ft. Each Each Each Each	5	4,000.00	2	5	8,000
Vehicular Signal Head (LED), 3 Section, 12" Lens, 1-Way, Polycarbonate Covering of Vehicular Signal Head Covering of Pedestrian Signal Head Pedestrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor. No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Each Each Each Each		12,15	90	s	1,094
Covering of Vehicular Signal Head Covering of Pedastrian Signal Head Pedastrian Pushbutton Loop Delector Unit Signal Cable, 7 Conductor. No. 14 AWG Loop Detector Lead-in Cable Detector Lead-in Cable Detector Loop Power Sarvice Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedastal Foundation	Each Each	5	500.00	16	\$	8,000
Covering of Pedestrian Signal Head Pedestrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor. No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Each	\$	650.00	12	\$	7,800
Pedestrian Pushbutton Loop Detector Unit Signal Cable, 7 Conductor. No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation		\$	28.25	14	5	396
Loop Detector Unit Signal Cable, 7 Conductor. No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation		\$	27.00	14	\$	378
Signal Cable, 7 Conductor: No. 14 AWG Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Each	5	325.00	6	5	1,950
Loop Detector Lead-in Cable Detector Loop Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Each	\$	200,00	11	5	2,200
Detector Laap Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Lin. Ft.	5	1,65	1500	5	2,475
Power Service Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Lin. Ft.	\$	1.55	1300	\$	2,015
Power Cable, 2 Conductor, No. 6 AWG Signal Support Foundation Pedestal Foundation	Each	\$	1,175.00	18	S	21,150
Signal Support Foundation Pedestal Foundation	Each	\$	1,500.00	2	\$	3.000
Pedestal Foundation	Lin. Ft.	\$	2.25	425	\$	956
Pedestal Foundation	Each	\$	3,000.00	В	\$	24,000
	Each	\$	650.00	2	\$	1,300
Signal Support Type TC-81.20 Design 4 Pole with Mast Arms TC-81.20 Design 3	Each	\$	4,500.00	6	\$	27,000
Design 1						
Pedestal 10', Transformer Base	Each	5	710.00	2	\$	1,420
Controller Unit, Type TS2/A1 with Cabinet, Type TS2	Each	\$	15,000,00	2	\$	30,000
Concrete for Cabinet Foundation	Cu. Yard	\$	1,800.00	2	\$	3,600
Controller Work Pad	Sq. Ft.	\$	72.50	25	\$	1,813
	coeş/yəriqdə ca Tr	affic Si	ignal Subtotal	404,853,25		
MISCELLANEOUS						
		Avg U	Init Price Est.			
Construction Layout Stakes	Lump	\$	5,000.00	1	\$	5,000
Mobilization	Lump	\$	10,000.00	1	\$	10,000
Rondabout	Լստը	\$	50,000.00	1	\$	50,000
	Mis	cellan	eous Subtotal 📑	65,000.00		
	• "	300	SUBT	ΠΑΤΟ	S	1,779,305,26
		5600500	The state of the s	With the Manual of the Study of the San	Chest A western	
		200	15% CONT		\$	266,895.79
		ESC	CALATION	10%@2.5 YRS)	S	553,497.38
	····· /14.4.W	53500				PROPERTY OF THE PROPERTY OF TH
		Part Service	SUDI	OTAL	\$	2,599,698.43
Utility Relocation	Laure	-	450 500 00		<u> </u>	
out moderal	Lump	S	153,000.00	1	S	153,000
	2.5,694095050 M18	CONSTR	eous Subtotal 🤄 💲	153,000.00	ļ	
Property Acquisition	Line	 			<u> </u>	
(operty Acquisitor)	Lump	\$	1,847,500.00	1	\$	1,647,500
	Mis	cellane	ous Subtotal 🦂	1,647,500.00	<u> </u>	
		1			1	
		1	SUBT	OTAL	\$	4,400,198,43
		N. Co.			S	
		50200	FUNDING		**	1,993,016.00
		7	SCIP TOTA		S	

Ohio · Kentucky · Indiana
Regional Council of Governments

July 1, 2008

Ms. Jennifer Kaminer Village Administrator Village of Fairfax 5903 Hawthorne Avenue Fairfax, OH 45227

Dear Ms. Kaminer:

I am pleased to inform you that on June 12, 2008 the OKI Board of Directors approved the request from the Village of Fairfax to fund the US 50 project from Meadowlark Drive to the Mariemont Corporate line. The approved amount is \$1,993,016 in federal Congestion Mitigation/Air Quality (CMAQ) funds, including \$863,200 for the right-of-way phase and \$1,129,816 for the construction phase. I anticipate the funds will be available from the OKI sub-allocation of CMAQ funds during fiscal year 2011 for right-of-way and fiscal year 2013 for the construction phase.

Please contact Mr. Edward Moore at ODOT – District 8 in the next 30 days to schedule a field review of the project area. If you have any questions, feel free to contact me.

Sincerely,

Mark R. Paine TIP Manager

c: Steve DeHart, ODOT – District 8 Edward Moore, ODOT – District 8

Christine L. Matacic
President

Mark R. Policinski Executive Director

RESOLUTION NO. 4-2008

A RESOLUTION AUTHORIZING THE ADMINISTRATOR AND CLERK-TREASURER TO FILE AN APPLICATION WITH THE OHIO PUBLIC WORKS COMMISSION FOR STATE CAPITAL IMPROVEMENT (SCIP) FUNDS -ROUND 23, AND DECLARING AN EMERGENCY

WHEREAS, road and traffic maintenance are priorities of the Village of Fairfax pursuant to which the Village wishes to perform repairs and improvements on Wooster Pike; and

WHEREAS, the State of Ohio has allowed for the issuance of State Capital Improvement (SCIP) Funds – Round 23 for 2008; and

WHEREAS, the District Public Works Integrating Committee of Hamilton County (DPWIC) is the recipient of State Capital Improvement (SCIP) funds from the Ohio Public Works Commission (OPWC); and

WHEREAS, the Village of Fairfax may apply for funding under the State Capital Improvement Program as part of District 2 (Hamilton County) allocation for road repairs and improvements.

NOW, THEREFORE, BE IT RESOLVED by the Council of the Village of Fairfax, State of Ohio, that:

SECTION I: The Council of the Village of Fairfax does hereby endorse and support the application for Ohio Public Works Commission funds for repairs and improvements to Wooster Pike within the Village of Fairfax.

SECTION II: The Administrator and Clerk-Treasurer are hereby authorized and directed to file an application with the District Public Works Integrating Committee of Hamilton County (DPWIC) for Ohio Public Works Commission funding under State Capital Improvement (SCIP) funds for 2008, and if awarded to implement said program.

SECTION III: The Village of Fairfax hereby requests the District Public Works Integrating Committee (DPWIC) and the Ohio Public Works Commission (OPWC) to consider and fund the referenced application.

SECTION IV: This Resolution is hereby declared to be an emergency measure necessary for the immediate preservation of the public peace, health, safety and general welfare and shall be effective immediately. The reason for said declaration of emergency is to submit an application for State Capital Improvement (SCIP) funds within the period of application.

Passed this 15th day of September, 2008.

Theodor W Shunnon &

ATTEST:

Clerk-Treasurer

CERTIFICATE

I hereby certify this to be a true and correct copy of Resolution No. 4-2008 passed at a meeting of the Council of the Village of Fairfax on this 15th, day of September, 2008.

RESOLUTION NO. R1-2008

REQUESTING THE DIRECTOR OF THE OHIO DEPARTMENT OF TRANSPORTATION TO DETERMINE AND DECLARE A REASONABLE AND SAFE PRIMA-FACIE SPEED LIMIT ALONG A PORTION OF U.S. 50 IN THE VILLAGE OF FAIRFAX

WHEREAS, Council has requested that a determination be made as to whether the statutory vehicular speed limit established by Section 4511.21 of the Ohio Revised Code on Wooster Pike in the Village of Fairfax (U.S. Route 50), from Southern Avenue to 150 feet west of the Wooster Pike/Meadowlark Lane intersection, is greater than what should be considered reasonable and safe; and

WHEREAS, Barr & Provost Engineering ("Engineer") was requested to make an engineering and traffic investigation of the speed limit upon the above-described section of Wooster Pike; and

WHEREAS, as set forth in the report attached hereto as Exhibit A, the Engineer has determined that the statutory speed limit upon the above-described section of Wooster Pike is greater than reasonable and safe under the conditions found to exist at such location.

NOW, THEREFORE, BE IT RESOLVED by the Council of the Village of Fairfax, State of Ohio that:

SECTION I: In accordance with Ohio Revised Code Section 4511-21(I)(1), the Director of the Ohio Department of Transportation is hereby requested to determine and declare a reasonable and safe prima-facie speed limit on Wooster Pike from Southern Avenue to 150 feet west of the Wooster Pike/Meadowlark Lane intersection.

SECTION II: Upon determination and declaration by the Director of the Ohio Department of Transportation of such reasonable and safe prima-facie speed limit, such speed limit shall become effective upon the posting of appropriate signs by the Village at said location.

SECTION III: It is found that all formal actions of this Council concerning and relating to the adoption of this Resolution were adopted in an open meeting of this Council, and that all deliberations of this Council that resulted in this formal action were in meetings open to the public in compliance with all legal requirements, including Section 121.22 of the Ohio Revised Code.

Passed this 19 day of Julmany, 2008.

Therew Whanson

ATTEST:

Clerk-Treasurer

A GEORGE NO.

Village of Mariemont

6907 Wooster Pike Mariemont, Ohio 45227 (513) 271-3246 www.mariemont.org

April 17, 2008

Village of Fairfax Village Administrator 5903 Hawthorne Avenue Cincinnati, OH 45227

RE: Reconfiguration of US 50 Wooster Pike

To Whom It May Concern,

The Village of Mariemont supports the efforts of the Village of Fairfax to reconfigure US 50 Wooster Pike through the Village of Fairfax to a three lane section and that the Village of Mariemont will work with the Village of Fairfax to design the transition at the corporation line between the two villages for the benefit of the traveling public.

The Village of Mariemont also understands that all costs related to this project will be paid for by the Village of Fairfax, including the costs to reconfigure the roadway inside the Village of Mariemont Corporation limits.

If you have any questions regarding this letter please contact the Mariemont Village Engineer, Chris Ertel, at 513-317-2762.

Sincerely,

Dan Policastro

Mayor, Village of Mariemont

CC: Chris Ertel, Mariemont Engineer

Caroline Duffy

From: Jay.Hamilton@dot.state.oh.us

Sent: Wednesday, September 03, 2008 12:54 PM

To: Caroline Duffy

Subject: Re: Wooster Pike Plan

Caroline.

The preliminary plan looks fine. It appears that a considerable amount of access improvements will be made. One thing to remember is that if federal dollars are utilized on this project we will still have to follow the ODOT PDP, but this work and effort will be very helpful in the process.

Thanks, Jay Hamilton, District 8 Traffic Planning Engineer 505 South SR741 Lebanon, Ohio 45036 513-933-6584 1-800-831-2142 ext9336584

"Caroline Duffy" <cduffy@barreng.com>

To <Jay.Hamilton@dot.state.oh.us>

09/03/2008 07:46 AM

CC "Jennifer Kaminer" <jkaminer@fuse.net>

Subject Wooster Pike Plan

Jay,

Attached is the Wooster Pike plan as it stands to date. It incorporates the proposed utility pole line on the south side of Wooster Pike as well as the Spring Street Access Road. Five residential streets have now been cul-desac'd based on the public meetings. We have met with a majority of the property owners, both business and residential, as well as SORTA and the Utility Companies. Please review and let me know if there are any other items that we need to address. If we could have your comments back by Monday, September 8, 2008, it would be appreciated.

Thanks, Caroline

Caroline F. Duffy, P.E.

Sr. Traffic Engineer

Barr & Prevost

2853 Fischer Place Cincinnati, Ohio 45211 c:(513) 476-6271

Barr & Prevost

9420 Towne Square Drive, Suite 22 Cincinnati, Ohio 45242 p: (513) 936-9400 f: (513) 936-8400 www.barreng.com

[attachment "ODOT Submittal Wooster Pike 090308.pdf" deleted by Jay Hamilton/Planning/D08/ODOT]

September 18, 2008

To Whom It May Concern:

This letter is an acknowledgement that Metro is aware of the road improvement plans proposed for Wooster Pike in Fairfax. Metro believes that the proposed improvements will be beneficial for public transit service and for bus passengers in this area.

Sincerely,

Ted C. Meyer The Metro Manager of Planning & Scheduling

Wooster Pike Study, Fairfax, Ohio Typical Section

BARR & PREVOST

ENGINEERING-TESTING

9420 Towne Square Ave. Suite 22 Cincinnati, Ohio 45242

September 18, 2008

District 2 Integrating Committee Ohio Public Works Commission Hamilton County, Ohio

RE: WOOSTER PIKE TRAFFIC COUNTS AND USERS CERTIFICATION

As required by the District 2 Integrating Committee of the Ohio Public Works Commission, I certify the following sources of the traffic counts utilized for the Wooster Pike Project. I also certify the counts performed by Barr & Prevost are true and accurate counts.

Wooster Pike Tube Counts: Source: Ohio Department of Transportation website

Side Street Tube Counts on Germania Avenue, Lonsdale Street, Simpson Avenue and Carlton Avenue: Barr & Prevost conducted these counts during the first two weeks of March, 2008.

Turning Movement Counts at US50/Wooster Pike and Meadowlark Lane and US50/Wooster Pike and Watterson Road: Barr & Prevost conducted these counts in the AM and PM Peak Hours during the first two weeks of March, 2008.

These counts showed the following:

Traffic:

ADT

21,750 X 1.20 = 26,100 Users

Transit:

ADT

3.800 X 1.20 = 4.560 Users

Total Traffic and Transit: 30,660 Users

Cawline J. Deffy PE

Respectfully,

Caroline F. Duffy, PE Senior Traffic Engineer

Barr & Prevost

BARR & PREVOST

ENGINEERING-TESTING

9420 Towne Square Ave. Suite 22 Cincinnati, Ohio 45242

September 18, 2008

District 2 Integrating Committee Ohio Public Works Commission Hamilton County, Ohio

RE: SORTA TRANSIT NUMBERS CERTIFICATION

As required by the District 2 Integrating Committee of the Ohio Public Works Commission, I that Ted Meyers of SORTA verbally gave me these transit numbers via telephone on September 18, 2008.

SORTA Average Daily Ridership:

Routes 11 & 69: 2900 ADT

Route 28:

900 ADT

Total:

3800 ADT

USERS: 3800 ADT x 1.2= 4,560 Users

Respectfully,

Caroline F. Duffy, PE Senior Traffic Engineer

Cawhine & Duffy PE

Barr & Prevost

CAROLINE E DUFFY NO E-58016

OHIO DEPARTMENT OF TRANSPORTATION

DISTRICT 8 • 505 SOUTH STATE ROUTE 741 • LEBANON, OHIO 45036-9518 513-932-3030 or 1-800-831-2142 • Fax 513-932-9366

TRANSPORTATION PLANNING & PROGRAMS DEPARTMENT

September 16, 2008

Caroline Duffy
Senior Traffic Engineer
Barr & Prevost
9420 Towne Square Ave.
Cincinnati, Ohio 45242

Re:

Pavement Projects on US 50

Dear Ms. Duffy:

The roadway surface of US 50, Wooster Pike, in the Villages of Fairfax and Mariemont was resurfaced in the summer of 2007 via an ODOT project, HAM-50-27.75, pid# 25297. The project started at western Fairfax corporation line to the eastern corporation line of Mariemont.

This project included work on the roadway surface and bridge decks. The roadway work included asphalt planing, pavement repair, and placement of a new asphalt surface course. The bridge work included bridge deck sealing, expansion joint maintenance, and drainage system clean-out. No work on existing curb and gutter or sidewalks was included in the plans.

If you need additional information, I am available at your convenience. Call me at (513) 933-6608 or e-mail me at jennifer.elston@dot.state.oh.us if you have any questions.

Respectfully,

Jennifer F. Elston, P.E.

ODOT District 8 Pavement Planning Engineer

c: file

BARR & PREVOST

ENGINEERING - TESTING

2853 FISCHER PLACE CINCINNATI, OHIO 45211

January 15, 2008

Ms. Jennifer Kaminer Village Administrator Village of Fairfax 5903 Hawthorne Avenue Fairfax, Ohio 45227

RE: Building Frontage Study

Dear Jenny,

We have utilized the CAGIS mapping of the Wooster Pike Corridor in the Village of Fairfax from the Southern Avenue/Dragon Way intersection with Wooster Pike to the Camden Avenue/Belmont Street intersection with Wooster Pike to determine if this area is a Central Business District as defined by the Ohio Revised Code. To make this determination, the Ohio Revised Code states that the frontage occupied between said intersections must be greater than 50% of the total length for both sides of the street. Each side is calculated separately to make this determination and both sides must meet these standards. In this calculation, the frontage occupied by the side streets is taken out of the calculation. If this corridor is determined to be a Central Business District, the Village will need a resolution declaring the corridor is a Central Business District, and then the speed limit in this corridor change be changed from the posted 35 mph to the legal speed limit in this corridor change be

Based on the information above, we have concluded that the corridor in question does fit the criteria of the Ohio Revised Code and should be declared a Central Business District.

The north side of the corridor has 53.62% occupied with building frontage. The south side of the corridor has 62.46% occupied with building frontage.

The attachments to this letter are the backups of these findings. Bill Vorst, of ODOT District 8, has agreed with these findings.

Respectfully,

Caroline F. Duffy, PE Senior Traffic Engineer

Caroline Duffy

TEL: (513) 476-6271

FAX: (513) 662-5017

cduffy@barreng.com

Building Frontage Study Wooster Pike, Southern Avenue to Belmont Street Village of Fairfax, Ohio January, 2008

		Distance	Distance
		without	with
	Side of	Building	Building
Between	Street	(Ft.)	(Ft.)
Southern	Avenue		······································
	North	40.08	55.73
	North	3.45	37.91
	North	3.13	118.51
	North	27.91	52.09
	North	32.61	
Germania	Avenue		
	North	2.25	38.94
	North	81.96	64.11
	North	85.97	
Lonsdale	Street		
	North	17.16	113.44
	North	65.36	44.51
	North	32.28	
Wattersor	Road		
	North	20.62	73.84
	North	107.62	26.67
	North	44.09	
Simpson A	\venue		
	North	46.27	45.76
	North	48.28	92.13
	North	35.30	
Carlton Av	enue		
	North	11.56	99.46
	North	23.52	66.79
	North	74.84	
Belmont S	treet		
		804.26	റാറ വ

		- · · · · · · · · · · · · · · · · · · ·	
		Distance	Distance
		without	with
	Side of	Building	Building
Between	Street	(Ft.)	(Ft.)
Dragon W	/ay		
	South	95.70	42.63
	South	4.80	161.63
	South	45.94	99.50
	South	86.40	
Spring Str	eet		
	South	81.40	44.73
	South	6.22	69.46
	South	48.77	107.90
	South	71.09	77.13
	South	3.17	42.92
	South	18.26	
Arrow Poi	nt Way		
	South	22.19	70.42
	South	39.00	43.52
	South	30.61	208.75
	South	83.90	25.69
	South	2.86	61.12
	South	3.19	15.28
Corporation	n Limit		
		643.50	1070.68

804.26 929.89

North

South

Sum of street with building:

929.89 53.62% 1070.68

Sum of street without building:

<u>804.26</u> 46.38% <u>643.50</u>

62.46% 37.54%

Total

1734.15

1714.18

EXHIBIT A

			WARRAI	NTS FOR SF	EED ZONES	5			
NAME: Village of Fa	nifax				DATE:		2/5/20(08	
	1 END: 25	ROUTE 9.85 LENGT	/STREET:	US-50 ins	de Fairfax 14 ADT:				
			ngth minus B	legin Length)	THIADT.	!	1978	30]	
I. HIGHWAY DEVELO	PMENT								
(A) BUILDING DEVEL	OPMENT		(D) INTER	ACECTION O					
				RSECTION C	LASSIFICAT	ION			
TYPE 1 - UNITS TYPE 2 - UNITS	0 X 1 = 0 X 2 =		0 CLASS A 0 CLASS B			1 X 2 =		2	
TYPE 3 - UNITS	0 X 3 =		0 CLASS C			1 X 3 = X 4 =		3	
TYPE 4 - UNITS	0 X 4 =		0	1,,0.				0	
	TOTAL TYPE (A)		0		TOTAL C	LASS (B)		 5	
HIGHWAY DEVELOPM	IENT = (A)		0 + (B)		5 =	35.714285	7		
			0.14			<u> </u>	-		
II. ROADWAY FEATUR	ES								
FACTORS		. 8	9	10	11	12			
1) LANE WIDTH, FEET		<9	9	10	11	>=12	-	ה	
2) SHOULDERUnir					<u> </u>	3	11	П	
inproduction (19		<2	<4	<6	>=6			_	
impio	****		<2	<4	<6	>=6	10		
3) CHARACTERISTICS		E	a	С	В	l A	12	1	
•			TOTAL RO	ADWAY FEA		·	33	-	
/. ACCIDENT CALCULA	TION: 2746	v						-	
. ACCIDENT CALCULA	TION: 2740 1978	X 30 ADTX	24 3	ACC. YR. X	0.44	1411.50	ACC.	=	7.915644
				, IN. X	U. 14	MILES =	_MIL. VEH. MI	LES	
PEED LIMIT FACTOR		45	55	64	73	82	91	100]
HIGHWAY DEVELOP	MENT	>80	69-80	57-68					7
		 _	03.00		AE E0			1	
. ROADWAY FEATURE				31-00	45-56	33-44	21-32	<21	82
	<u>s</u>	24	25-26	27-28	45-56 29-30	33-44	21-32 33-34	<21 35-36	
. 85 PERCENTILE (MP				27-28	29-30	31-32	33-34	35-36	91
		23-27	28-32						
I. 85 PERCENTILE (MP.				27-28	29-30	31-32	33-34	35-36	91
/. PACE (MPH)		23-27	28-32	27-28 33-37	29-30 38-42	31-32 43-47	33-34 48-52 38-52	35-36 >52 43-57	91 73
/. PACE (MPH)		23-27	28-32 18-32	27-28 33-37 23-37	29-30 38-42 28-42	31-32 43-47 33-47	33-34 48-52 38-52 1.6-2.2	35-36 >52 43-57 <1.5	91 73 73 45
/. PACE (MPH) . ACCIDENTS/MVM	н)	23-27	28-32 18-32	27-28 33-37 23-37	29-30 38-42 28-42	31-32 43-47 33-47	33-34 48-52 38-52	35-36 >52 43-57 <1.5	91 73
/. PACE (MPH) . ACCIDENTS/MVM	н)	23-27	28-32 18-32 4.4-5.0	27-28 33-37 23-37 3.7-4.3	29-30 38-42 28-42 3.0-3.6	31-32 43-47 33-47	33-34 48-52 38-52 1.6-2.2	35-36 >52 43-57 <1.5	91 73 73 45
/. PACE (MPH) . ACCIDENTS/MVM	H)	23-27	28-32 18-32 4.4-5.0	27-28 33-37 23-37 3.7-4.3	29-30 38-42 28-42 3.0-3.6	31-32 43-47 33-47 2.3-2.9	33-34 48-52 38-52 1.6-2.2	35-36 >52 43-57 <1.5 ORS =	91 73 73 45
ACCIDENTS/MVM ACCIDENTS/MVM ALCULATED SPEED:	H) TOTAL FAC	23-27	28-32 18-32 4.4-5.0	27-28 33-37 23-37 3.7-4.3	29-30 38-42 28-42 3.0-3.6	31-32 43-47 33-47 2.3-2.9	33-34 48-52 38-52 1.6-2.2	35-36 >52 43-57 <1.5 ORS =	91 73 73 45
/, PACE (MPH) . ACCIDENTS/MVM ALCULATED SPEED: . TEST RUN, AVERAGE	H) TOTAL FAC	23-27 13-27 >5.0	28-32 18-32 4.4-5.0 364 5	27-28 33-37 23-37 3.7-4.3	29-30 38-42 28-42 3.0-3.6	31-32 43-47 33-47 2.3-2.9	33-34 48-52 38-52 1.6-2.2 TOTAL FACTO	35-36 >52 43-57 <1.5 ORS =	91 73 73 45
ACCIDENTS/MVM ACCIDENTS/MVM ALCULATED SPEED:	H) TOTAL FAC	23-27 13-27 >5.0	28-32 18-32 4.4-5.0 364 5	27-28 33-37 23-37 3.7-4.3	29-30 38-42 28-42 3.0-3.6	31-32 43-47 33-47 2.3-2.9	33-34 48-52 38-52 1.6-2.2 TOTAL FACTO	35-36 >52 43-57 <1.5 ORS =	91 73 73 45

Barr & Prevost

engineering - testing

March 20, 2008

Wooster Pike Traffic Study

angineering – testing

Barr & Prevost

March 20, 2008

Wooster Pike Traffic Study

Barr & Prevost

engineering – testing

Working Toesther To Build A Beer Community

Wooster Pike Study Village Fairfax, Ohio

Accidents per Million Vehicle Miles Along Wooster Pike From Meadowlark/Wooster Pike east the Mariemont Corporation Line

CRASHES FOR YEAR 2004, 2005 and 2006

Year	# Crashes
2004	33
2005	31
2006	12
TOTAL	76

Number of crashes for 3 Years: 76

Exposure 365 days x 3 years: 1,095 days

ADT: 21,750

Project Length: 0.56 miles

Accidents per million vehicle miles:

- (76 crashes) x (1,000,000) (1,095 days) x (0.56 miles) x (21,750 ADT)
- $= \frac{76,000,000}{13,337,100}$
- = 5.70 Accidents per millions vehicle miles

ORDINANCE NO. 15-1998

LEVYING A MUNICIPAL MOTOR VEHICLE LICENSE FEE PURSUANT TO SECTION 4504.172 OF THE OHIO REVISED CODE

BE IT ORDAINED by the Council of the Village of Fairfax, State of Ohio that:

SECTION I: Pursuant to Section 4504.172 of the Ohio Revised Code, there is hereby levied an annual license tax upon the operation of motor vehicles on the public roads or highways for the purpose of paying the costs and expenses of enforcing and administering the tax provided for in this section; to provide additional revenue for the purposes set forth in Section 4504.06 of the Ohio Revised Code; and to supplement revenue already available for such purposes.

SECTION II: The tax provided herein shall be at the rate of Five Dollars (\$5.00) per motor vehicle on each and every motor vehicle the district of registration of which, as defined in Section 4503.10 of the Ohio Revised Code, is in the Village of Fairfax, Ohio.

SECTION III: As used in this Ordinance, the term "motor vehicle" means any and all vehicles included within the definition of motor vehicle in Sections 4501.01 and 4505.01 of the Ohio Revised Code, as those sections may be amended from time-to-time.

SECTION IV: The tax imposed by this Ordinance shall apply to and be in effect for the registration year commencing January 1, 2000 and shall continue in effect and application during each registration year thereafter.

SECTION V: The tax imposed by this Ordinance shall be paid to the Registrar of Motor Vehicles of the State of Ohio or to the Deputy Registrar at the time application for registration of a motor vehicle is made.

SECTION VI: All money derived from the tax levied herein shall be used by the Village of Fairfax for the purposes specified in this Ordinance.

SECTION VII: This Ordinance shall take effect from and after the earliest period allowed by law.

Passed this 10th day of <u>September</u> 1998.

Mayor Mensey

ATTEST:

Kelucca Steplensi Clerk-Treasurer Acting

CERTIFICATE

I hereby certify this to be a true and correct copy of Ordinance No. 15-1998 passed at a meeting of the Council of the Village of Fairfax on this Lota day of September, 1998.

Wooster Pike Traffic Study

Tube Counts

AVERAGE 24-HR TRAFFIC VOLUME 2005 HAMILTON CO

_			
14310	19780	21750	21750
290	450	940	0.40
14020	19330	20810	20810
.17	. 68	.37	103
S. CORP. FAIRFAX			CORP. MARTEMONT
LEAVE CINCINNATI /	RED BANK RD.	SOUTHERN AVE.	LEAVE FAIRFAX / W.
29.00	29.17	29.85	30.22
D	ם	Ω	Þ

Barr & Prevost

Wooster Pike Traffic Study

Existing Tube Volumes

AM Peak Hour 7:30 AM-8:30 AM

PM Peak Hour 4:45 PM-5:45 PM

Lonsdale

Germania

engineering - testing Barr & Prevost

Wooster Pike Traffic Study

Counts Existing Turning Movement

AM Peak Hour 7:30 AM-8:30 AM

Wooster and Watterson

engineering – testing Barr & Prevost

March 20, 2008

Wooster Pike Traffic Study

ing Turning Movement Counts

PM Peak Hour 4:45 PM-5:45 PM

engineering – testing Barr & Prevost

Ohio Public Works Commission Capital Improvement Report Summary Form

308			al Unknown																			
9/12/2008	Date	ndition	Critical						w. **-				·^									
		Units/Physical Condition	Poor																			
		Units/Ph	Fair		×		×												×			
	•		Good				****		×													
Hamilton	County		Excellent																			
	ī		Total Units	Center Line Miles	20	Number of Bridges	9	Number of Culverts	2	Number of Facilities	0	Linear Feet (Thousands)	0	Number of Facilities	0	Linear Feet (Thousands)	0	Linear Feet (Thousands)	Not known	Capacity (Tons per Day)	C	
061-25942	Code	Repair	Cost		\$800,000		\$800,000		\$200,000										\$200,000			\$2,000,000
		Replacement	Cost		\$2,000,000		\$2,000,000		\$1,000,000		N/A (CWW)		N/A		N/A (MSD)		N/A		\$900,000		\$105,000 (contract)	\$5,900,000
Village of Fairfax	Subdivision	Infrastructure	Component		Roads		Bridges		Culverts		Water Supply Systems		Water Distribution		Wastewater Systems		Wastewater Collection		Stormwater Collection		Solid Waste Disposal	Totals

Subdivision Socio-Economic Characteristics

Cur	Current	Ŧ	1990 Census Information	ormation		T
Population	1,038	Population	1,038	ж гмі		
Total Households	817	Total Households	832	% Poverty	2.0%	
% Unemployment	2.9%	IHW		% Unemploy	3.0%	

Ohio Public Works Commission Five Year Capital Improvement Plan/Maintenance of Effort

REQUIRED

Submit to Commission/Update Annually

		2013		\$20,000	25	\$0	\$0	\$0	98	0\$						
9/12/2008 Date	<u> </u>	112		\$20,000	\$0	\$500,000	\$0	0\$	SS	90\$						
·	Five Year Plan	2011	Planned	\$18,000	\$0	\$500,000	\$0	\$0	O\$	0\$						
	i i	2010		\$18,000	\$0	\$500,000	\$0	\$0	\$0	\$2,407,182						
		2009		\$18,000	\$150,000	\$500,000	\$0	\$0	\$60,000	\$0						
	Two Year Effort	2008	Funded	\$18,000	\$0	\$500,000	\$150,000	\$1,800,000	\$0	\$0						
	Two Yea	2007	Fun	\$18,000	\$0	\$0	\$0	\$2,400,000	\$0	\$0						
	Total	Cost		\$130,000	\$150,000	\$2,500,000	\$150,000	\$4,200,000	\$ 60,000.00	\$ 2,407,182.00						#
061-25942 Code	Status	(P) Pending	(C) Complete	А	A	∢	U	O	A	A						
		Codes(s)														
Village of Fairfax Subdivision	Project Name/Description			Police Cruiser Leases	New Watterson Road-Engineering	Plane Residential Streets-Ph. 1,2,3 & 4	Red Bank Road Engineering-Widening Ph. 2	Red Bank Road Widening Phase 2-Construction	Maintenance Dump Truck	Wooster Pike Revitalization Plan						

Blank Forms Available At www.pwc.state.oh.us

On Wooster Pike, at the Mariemont Corporation Line, looking East. Road section transitions to existing one lane in each direction with a median in Mariemont.

On Wooster Pike, at Mariemont Corporation Line, looking South. Residential land use on US 50/Wooster Pike.

On Wooster Pike, at Mariemont Corporation Line, looking West. Large curb cut. Curb not proper height. Sidewalk substandard width.

On Wooster Pike, west of Camden, looking East. Curb is not proper height. Sidewalk is substandard width...

On Wooster Pike at Camden/Belmont intersection, looking west. Large existing curb cut blocked off by parking blocks by owner.

On Wooster Pike, west of Camden, looking West. Large existing curb cut blocked off by parking blocks by owner. Curb is not proper height. Sidewalk is substandard width.

On Wooster Pike, west of Camden, looking South at existing crosswalk at unsignalized intersection.

On Wooster Pike, looking North at the Camden Avenue/Belmont Avenue intersection. The Wooster Pike Project will eliminate the extra pavement and construction a cul-de-sac for Camden Avenue(left). A speed hump will be constructed on Belmont Avenue(right)

On Wooster Pike,
Between Camden
Avenue and Carlton
Avenue, looking east.
Curb needs
reconstruction and
sidewalk needs to be
brought up to ADA
requirements and
moved away from the
edge of edge of travel
pavement.

On Wooster Pike, looking south at a residential home and the former Cincinnati Bell Telephone building. Notice the large curb cut.

On Wooster Pike, looking South at former Cincinnati Bell Building and Wendy's driveway. Notice large curb cuts.

US 50- Wooster Pike Project. Village of Fairfax, Ohio. Pictures taken August, 2008.

On Wooster Pike, between Camden Avenue and Carlton Avenue, looking East.

On Wooster Pike, west of Carlton Avenue, looking East. Notice the numerous curb cuts.

On Wooster Pike, at Simpson Avenue, looking West at numerous large trucks next to sidewalk.

On Wooster Pike, looking East. Notice interference of trees with large trucks

US 50- Wooster Pike Project. Village of Fairfax, Ohio. Pictures taken August, 2008.

On Wooster Pike, looking West. Notice bicyclist riding on the 4' wide sidewalk.

On Wooster Pike, looking East. Notice multi-modal nature of roadway, i.e.bicyclist. SORTA has several routes that make stops along this corridor as well.

On Wooster Pike, looking East. Notice pedestrians on substandard width sidewalk.

On Wooster Pike, looking at the antiquated signals at the Watterson Road intersection.

Sign for westbound Wooster Pike at parking zone. Conflicting messages on signs. Signs not posted at legal height.

On Wooster Pike, at Simpson Avenue, looking west. Notice business owner has taken closing off his driveways on Wooster Pike with flower boxes.

On Watterson Avenue, westbound. Notice the sign corners are clipped as the sign is close to the heavy vehicles on

On Wooster Pike, looking west. Outdated cross walk sign needs to be replaced and relocated to proper location by crosswalk.

On Wooster Pike, looking west. More large trucks next to sidewalk.

On Wooster Pike, looking south at Arrow Point Drive. Notice the large curb cut to the left.

On Wooster Pike, on south side of street, looking west. Notice large drop off next o sidewalk.

On south side of Wooster Pike, looking east.

On Wooster Pike, looking west at parking lot. This lot replaced a building to make way for sorely needed parking in the business district.

On Wooster Pike, looking North at the intersection of Watterson. Notice the business has a curb cut the entire length of the frontage on Wooster Pike and on Watterson Avenue.

On Wooster Pike, looking north at northeast corner of Wooster Pike and Lonsdale Avenue. This building currently has on street parking that is proposed to be removed. Trees are missing branches that are sticking out into the pavement area, forming a truck shape in the tree silhouette.

Utility pole line on Wooster Pike.

US 50- Wooster Pike Project. Village of Fairfax, Ohio. Pictures taken August, 2008.

On south side of Wooster Pike, looking north at self serve car wash. Notice curb cut that extends the entire length of the frontage on Wooster Pike.

On Wooster Pike, looking West. Notice numerous curb cuts.

US 50- Wooster Pike Project. Village of Fairfax, Ohio. Pictures taken August, 2008.

On south side of Wooster Pike, looking north at northwest corner of intersection with Germania Avenue. Notice large curb cuts on Wooster Pike frontage and one large curb cut on Germania Avenue.

On south side of Wooster Pike, looking west.

On Wooster Pike, looking east. Notice large trucks next to the sidewalk and the large curb cuts.

On Wooster Pike at Southern Avenue, looking west along the frontage for Frish's Restaurant. Sidewalks and ramps do not meet ADA requirements.

On Wooster Pike, looking north at the intersection of Lonsdale Avenue. Notice narrow sidewalks.

On south side of Wooster Pike, looking north. Notice trucks parked on sidewalk while loading and unloading.

On south side of Wooster Pike, looking west.

ADDITIONAL SUPPORT INFORMATION

For Program Year 2009 (July 1, 2009 through June 30, 2010), applying agencies shall provide the following support information to help determine which projects will be funded. Information on this form must be accurate, and where called for, based on sound engineering principles. Documentation to substantiate the individual items, as noted, is required. The applicant should also use the rating system and its' addendum as a guide. The examples listed in this addendum are not a complete list, but only a small sampling of situations that may be relevant to a given project.

1) What is the physical condition of the existing infrastructure that is to be replaced or repaired? Give a statement of the nature of the deficient conditions of the present facility exclusive of capacity, serviceability, health and/or safety issues. If known, give the approximate age of the infrastructure to be replaced, repaired, or expanded. Use documentation (if possible) to support your statement. Documentation may include (but is not limited to): ODOT BR86 reports, pavement management condition reports, televised underground system reports, age inventory reports, maintenance records, etc., and will only be considered if included in the original application.

The State of Ohio resurfaced the Wooster Pike Corridor in the summer of 2007. However, this construction project did not include any improvements from the curbs outside to the existing right-of-way line. This project will make the necessary safety

upgrades from the curb line to the existing right-of-way line. The roadway will receive a microsurface overlay on Wooster Pike. The cul-de-sacs at the stub streets will receive a full depth

pavement as will the Spring Street Access Road.

2) How important is the project to the safety of the Public and the citizens of the District and/or service area? Give a statement of the projects effect on the safety of the service area. The design of the project is intended to reduce existing accident rate, promote safer conditions, and reduce the danger of risk, liability or injury. (Typical examples may include the effects of the completed project on accident rates, emergency response time, fire protection, and highway capacity.) Please be specific and provide documentation if necessary to substantiate the data. The applicant must demonstrate the type of problems that exist, the frequency and severity of the problems and the method of correction. There are many curb cuts along the Wooster Pike Corridor. This corridor has been designated as a Central Business District and legislatively its speed limit is 25 mph, although the posted speed limit is currently 35 mph. Speed coupled with excessive curb cuts has led to numerous accidents. Data obtained from the Ohio Department of Transportation and verified by the Village of Fairfax Police Department has yielded a rate of 5.70 accidents per million vehicle mile. The majority of the accidents along this corridor (93.3%) are broken out into the following categories: Rear End 34.2%: Angle: 25%; Left Turn 11.8%; Parked Vehicle 11.8%; and Sideswipe 10.5%. The rear end accidents will be reduced with wider lanes and a center 2-way left turn lane, better signal timing and traffic calming to reduce speed. Angle accidents will be reduced by upgrading the existing signals. Left turn accidents will be reduced by wider lanes and a center 2 way left turn lane, better signal timing and reducing the number of opposing lanes to cross. Parked Vehicle accidents will be reduced by having designated loading/unloading areas, as well as a transit layover area, for busses and vehicles unloading/loading at businesses along the corridor, instead of current practice of loading/unloading in a travel lane. Sideswipe accidents will be reduced with wider lanes and a center 2 way left-turn lane and better signal timing. The overall accident rate will drop because of

the reduced speed provided by the traffic calming provided by the road diet. Currently, the typical section has the 4' wide sidewalk directly behind the barrier curb. There is a 940 (4%) Truck ADT on Wooster Pike. These trucks are concentrated during the 7AM to 6PM time period. It is unsafe to be walking on a narrow sidewalk at the same time having three trucks speeding next to the sidewalk, only separated by a 6" curb. The proposed typical section will provide a 2' gutter plate, a 6" curb and a 3.5' tree lawn between the edge of pavement that the trucks will be traveling in and the edge of the sidewalk that the pedestrian will be walking along. This 6' buffer will provide a safer roadway. In addition, several bicyclist have been observed riding Wooster Pike. Having a wider lane will assist the bicyclist. Currently because of poor signal installation and coordination, many vehicles turn from Wooster Pike, a minor arterial, onto the residential streets of Meadowlark Avenue, Grace Avenue, Southern Avenue, Germania Avenue, Lonsdale Avenue, Watterson Road, Simpson Road, Camden Avenue, Carlton Avenue and Belmont Avenue on a path that leads to Erie Avenue and I-71. These local roadway facilities were not made to handle this traffic. In an effort to protect the residential neighborhood streets, five cul-de-sacs are proposed at Germania Avenue, Lonsdale Avenue, Simpson Road, Camden Avenue, Carlton Avenue. As a disincentive, numerous speed humps will be placed on Grace Avenue, Southern Avenue, Watterson Road and Belmont Avenue. Further Traffic Calming will be achieved on Watterson Avenue with a roundabout at the intersection of Watterson Avenue and Bancroft Avenue. These efforts, in conjunction with the recently completed improvements on Red Bank Road and these new proposed improvements along the Wooster Pike Corridor will re-train the driver to stay on the minor arterial facilities instead of diverting to local residential street. The Access Management plan that includes the Spring Street Access Street as well as the stub streets on the north side of the corridor allows the elimination of all full movement driveways on the north side of the corridor and allows a majority of the driveways on the south side of the corridor to be eliminated, or modified to a minimum width. The center turn lane, the reduction of full access driveways and the reduced speed will result in fewer accidents along the Corridor.

3) How important is the project to the health of the Public and the citizens of the District and/or service area? Give a statement of the projects effect on the health of the service area. The design of the project will improve the overall condition of the facility so as to reduce or eliminate potential for disease, or correct concerns regarding the environmental health of the area. (Typical examples may include the effects of the completed project by improving or adding storm drainage or sanitary facilities, etc.). Please be specific and provide documentation if necessary to substantiate the data. The applying agency must demonstrate the type of problems that exist, the frequency and severity of the problems and the method of correction.

The travelers in the corridor currently experience delay and aggravation at the inefficiencies of the antiquated traffic signals. The visual clutter along the corridor leads to confusion as many different visual cues give mixed messages to the drivers. Skyline conducted an impromptu study during a lunch hour at their drive-through and found out that several of the drivers experienced fear in making a left-turn out of the drive-thru driveway across two lanes of speeding traffic. These items

are very real and are known contributors to health problems that could occur with the travelers of the
corridors.
4) Does the project help meet the infrastructure repair and replacement needs of the applying jurisdiction?
The applying agency must submit a listing in priority order of the projects for which it is applying. Points will be awarded on the basis of most to least importance. Priority 1 Wooster Pike Project
Priority 2 Spring Street Culvert Replacement
Priority 3
Priority 4
Priority 5
5) To what extent will the user fee funded agency be participating in the funding of the project? (example: rates for water or sewer, frontage assessments, etc.). Zero
6) Economic Growth – How will the completed project enhance economic growth Give a statement of the projects effect on the economic growth of the service area (be specific). In our meetings the past three months with the numerous existing businesses along the corridor,
many businesses have said that new growth will occur as better parking and safer accessibility
become part of the business district. Skyline Chili recently purchased the vacant KFC property next
to their existing property. Mike Misleh, owner of the Skyline, has said that because of the additional
parking, his business has picked up and he has hired more personnel. He expects to hire more
people as a result of this project. In addition, Dr. Sayre's Dentist office is planning an expansion and
has bought the property next to his existing building. In meetings with his Dr. Sayre and his
architect, the addition of additional parking adjacent to his site will allow him to add at least one
more dentist and hygienists to support six more chairs. Just as the road improvement to the Red
Bank Road Corridor has yielded much developer attention and as a result over \$100 million is
redevelopment is currently underway, the Village of Fairfax fields call frequently about
development opportunities along the Wooster Pike Corridor.

7) Matching Funds - LOCAL

The information regarding local matching funds is to be filed by the applying agency in Section 1.2 (b) of the Ohio Public Works Association's "Application For Financial Assistance" form.

Not applicable for this project.

8) Matching Funds - OTHER

The information regarding local matching funds is to be filed by the applying agency in Section 1.2 (c) of the Ohio Public Works Association's "Application For Financial Assistance" form. If MRF funds are being used for matching funds, the MRF application must have been filed by **Friday**, **August 29**, **2008** for this project with the Hamilton County Engineer's Office. List below all "other" funding the source(s).

The Village of Fairfax, Ohio has acquired Congestion Mitigation Air Quality (CMAQ) funds totaling \$1,993,016.00.

9) Will the project alleviate serious capacity problems or respond to the future level of service needs of the district?

Describe how the proposed project will alleviate serious capacity problems (be specific).

Currently there are not serious capacity problems along the corridor. However, the signals are very old and technologically out-of-date. They lack pedestrian pushbutton and crossing phases. They are pre-timed signals and field review revealed that many of these pre-timed phases, such as the westbound left-turn phase on Wooster Pike at Meadowlark Lane did not have any vehicles use those phases during the AM Peak Hour. Another example is the Wooster Pike eastbound leading phase at the Watterson Road intersection. Red-light running and 'rabbit' starts and stops at these intersections were observed during field reviews. Conversations with Village of Fairfax Police indicate these observations are common events. The growth of this corridor is unsure at this point. Currently, this corridor is the main path for travel from I-71 and the City of Cincinnati to SR 32. However, the Eastern Corridor Project may divert this major travel path to SR 32 to a new interchange at Red Bank Road just before the Wooster Pike Corridor. In this case, the project that in Stage 2 of design will decrease the traffic along the Wooster Pike Corridor. Therefore, it was assumed that the existing capacity analysis will be much greater than the future capacity needs.

Level of Service (LOS) calculations shall be for the improvements being made in the application. If this project is a phase of a larger project then any preceding phases shall be considered existing conditions for LOS calculations. Any future project phases shall not be considered as part of this applications LOS calculations.

For roadway betterment projects, provide the existing and proposed Level of Service (LOS) of the facility using the methodology outlined within AASHTO'S "Geometric Design of Highways and Streets" and the current edition of the Highway Capacity Manual.

No Build Proposed Geometry

Current Year LOS: Meadowlark AM & PM: C; Watterson AM & PM: B

Current Year LOS 2007

Design Year LOS: Meadowlark AM & PM: C; Watterson AM & PM: B

Design Year LOS 2007

If the proposed design year LOS is not "C" or better, explain why LOS "C" cannot be achieved.

The proposed and design year level of service is the same. The total delay for the existing AM and PM peaks for both intersections is 72.5 seconds of delay. The total delay for the proposed AM and PM peaks for both intersections is 69.9 seconds of delay. This is after going from a four-lane section with two-lanes in each direction, to a three-lane section with one lane in each direction.

10) If SCIP/LTIP funds were granted, when would the construction contract be awarded?

If SCIP/LTIP funds are awarded, how soon after receiving the Project Agreement from OPWC (tentatively set for July 1 of the year following the deadline for applications) would the project be under contract? The Support Staff will review status reports of previous projects to help judge the accuracy of a jurisdiction's anticipated project schedule.

Number of months 24						
a.) Are preliminary plans or engineering completed?	Yes_	X	No		N/A	
b.) Are detailed construction plans completed?	Yes		No	x	N/A	
c.) Are all utility coordination's completed?	Yes_	X	No		N/A	
d.) Are all right-of-way and easements acquired (if applicable)?	Yes		No	х	N/A	

ii no, now many parceis n	eeded for project? 39 Of these, now many	y are: Takes	5
		Temporary	
For any parcels not yet see	quired, explain the status of the ROW acquisition p	Permanent	30
	e properties will begin on July 01, 2010		the CMAQ
funding, to be comple	ted by January 15, 2011. Initial contact ha	as been made.	
e.) Give an estimate of time needed	to complete any item above not yet completed	7	Months.
11) Does the infrastructure have Give a brief statement concerning the	regional impact? ne regional significance of the infrastructure to be r	replaced, repaired, or	expanded.
The Wooster Pike Corridor is	s a Minor Arterial and connects 1-71 and	the City of Cinc	innati to SR
	d connects the east side of Hamilton Co		
Cincinnati.		arry and Cicimor	it County to
O Mile Mile Mile Mile Mile Mile Mile Mile			
12) What is the overall economic	health of the jurisdiction?		
The District 2 Integrating Commi- jurisdiction may periodically be adju	ttee predetermines the jurisdiction's economic hasted when census and other budgetary data are up	nealth. The economidated.	ic health of a
infrastructure? Typical examples in building permits, etc. The ban mus Submission of a copy of the approve	-	oriums or limitations	on issuance of
Not applicable for this project	•		
Will the ban be removed after the pr	oject is completed? YesNo	N/A	
For roads and bridges, multiply curdocumentation substantiating the condocumentation substantiating the condocumented traffic counts prior to facilities, multiply the number of how the professional engineer or the just Traffic: ADT 21,750 Transit: ADT 3,800 Total Traffic and Transit: 30	X 1.20 = 26,100 Users X 1.20 = 4.560 Users 0.660 Users	inclusion of public trictions or is partial ters, water lines, and	transit, submit lly closed, use d other related
Water/Sewer: Homes	Users		
dedicated tax for the pertine	d the optional \$5 license plate fee, an infr nt infrastructure? at type of fees, levies or taxes they have dedicated to		
Optional \$5.00 License Tax x	-		
Infrastructure Levy	Specify type		·
	Specify type		
Dedicated Tax	Specify type		
	Specify type		

SCIP/LTIP PROGRAM ROUND 23 - PROGRAM YEAR 2009 PROJECT SELECTION CRITERIA JULY 1, 2009 TO JUNE 30, 2010

NAME OF APPLICANT: FAIRFAX	
NAME OF PROJECT: WOSSTEZ PKE	
RATING TEAM:	

General Statement for Rating Criteria

Points awarded for all items will be based on engineering experience, field verification, application information and other information supplied by the applying agency, which is deemed to be relevant by the Support Staff. The examples listed in this addendum are not a complete list, but only a small sampling of situations that may be relevant to a given project.

Appeal Score

CIRCLE THE APPROPRIATE RATING

- 1) What is the physical condition of the existing infrastructure that is to be replaced or repaired?
 - 25 Failed
 - 23 Critical
 - 20 Very Poor
 - 17 Poor
 - 15 Moderately Poor
 - 10 Moderately Fair

Criterion 1 - Condition

Condition of the particular infrastructure to be repaired, reconstructed or replaced shall be a measure of the degree of reduction in condition from its original state. Historic pavement management data based on ASTM D6433-99 rating system may be submitted as documentation. Capacity, serviceability, safety and health shall not be considered in this criterion. Any documentation the Applicant wishes to be considered must be included in the application package.

Definitions:

Failed Condition - requires complete reconstruction where no part of the existing facility is salvageable. (E.g. Roads: complete reconstruction of roadway, curbs and base; Bridges: complete removal and replacement of bridge; Underground: removal and replacement of an underground drainage or water system.

Critical Condition - requires partial reconstruction to maintain integrity. (E.g. Roads: reconstruction of roadway/curbs can be saved; Bridges: removal and replacement of bridge with abutment modification; Underground: removal and replacement of part of an underground drainage or water system.

<u>Very Poor Condition</u> - requires extensive rehabilitation to maintain integrity. (E.g. Roads: extensive full depth, partial depth and curb repair of a roadway with a structural overlay; Bridges: superstructure replacement; Underground: repair of joints and/or replacement of pipe sections.

Poor Condition - requires standard rehabilitation to maintain integrity. (E.g. Roads: moderate full depth, partial depth and curb repair to a roadway with no structural overlay needed or structural overlay with minor repairs to a roadway needed; Bridges: extensive patching of substructure and replacement of deck; Underground: insituform or other in ground repairs.

Moderately Poor Condition - requires minor rehabilitation to maintain integrity. (E.g. Roads: minor full depth, partial depth or curb repairs to a roadway with either a thin overlay or no overlay needed; Bridges: major structural patching and/or major deck repair.

Moderately Fair Condition - requires extensive maintenance to maintain integrity. (E.g. Roads: thin or no overlay with extensive crack sealing, minor partial depth and/or slurry or rejuvenation; Bridges: minor structural patching, deck repair, erosion control.)

Fair Condition - requires routine maintenance to maintain integrity. (E.g. Roads: slurry seal, rejuvenation or routine crack sealing to the roadway; Bridges: minor structural patching.)

Good or Better Condition - little to no maintenance required to maintain integrity.

Note: If the infrastructure is in "good" or better condition, it will <u>NOT</u> be considered for SCIP/LTIP funding unless it is an expansion project that will improve serviceability.

25 - Highly significant importance 20 - Considerably significant importance	Appeal Score
15 - Moderate importance 10 - Minimal importance 5 Poorly documented importance - No measurable impact	
Criterion 2 – Safety	

How important is the project to the safety of the Public and the citizens of the District and/or service area?

The applying agency shall include in its application the type of deficiency that currently exists and how the intended project would improve the situation. For example, have there been vehicular accidents attributable to the problems cited? Have they involved injuries or fatalities? In the case of water systems, are existing hydrants non-functional? In the case of water lines, is the present capacity inadequate to provide volumes or pressure for adequate fire protection? In all cases, specific documentation is required. Mentioned problems, which are poorly documented, generally will not receive more than 5 points.

Note: Each project is looked at on an individual basis to determine if any aspects of this category apply. **Examples given above are NOT intended to be exclusive.**

Appeal Score

- 3) How important is the project to the health of the Public and the citizens of the District and/or service area?
 - 25 Highly significant importance
 - 20 Considerably significant importance
 - 15 Moderate importance
 - 10 Minimal importance
 - 5 Poorly documented importance 0 - No measurable impact

Criterion 3 - Health

2)

The applying agency shall include in its application the type, frequency, and severity of the health problem that would be eliminated or reduced by the intended project. For example, can the problem be eliminated only by the project, or would routine maintenance be satisfactory? If basement flooding has occurred, was it storm water or sanitary flow? What complaints if any are recorded? In the case of underground improvements, how will they improve health if they are storm sewers? How would improved sanitary sewers improve health or reduce health risk? In all cases, quantified documentation is required. Mentioned problems, which are poorly documented, generally will not receive more than 5 points.

Nate: Each project is looked at on an individual basis to determine if any aspects of this category apply. **Examples given above** are **NOT** intended to be exclusive.

4) Does the project help meet the infrastructure repair and replacement needs of the applying agency?

Note: Applying agency's priority listing (part of the Additional Support Information) must be filed with application(s).

25) First priority project	Appeal Score
20 - Second priority project	
15 -Third priority project	
10 - Fourth priority project	
5 - Fifth priority project or lower	

Criterion 4 - Jurisdiction's Priority Listing

The applying agency **must** submit a listing in priority order of the projects for which it is applying. Points will be awarded on the basis of most to least importance. The form is included in the Additional Support Information.

To what extent will a user fee funded agency be	participating in the funding of the projec
(10) Less than 10%	
9 – 10% to 19.99%	
8 – 20% to 29.99%	Appeal Scor
7 – 30% to 39.99%	**
6 – 40% to 49.99%	
5 – 50% to 59.99%	
4 – 60% to 69.99%	
3 – 70% to 79.99%	
2 – 80% to 89.99%	
1 – 90% to 95%	
0 – Above 95%	

Criterion 5 - User Fee-funded Agency Participation

To what extent will a user fee funded agency be participating in the funding of the project? (Example: rates for water or sewer, frontage assessments, etc.). The applying agency must submit documentation.

6) Economic Growth – How the completed project will enhance economic growth (See definitions).

10 – The project will <u>directly</u> secure new employment	Appeal Score
The project will permit more development	
√ 0 −)The project will not impact development	

Criterion 6 - Economic Growth

Will the completed project enhance economic growth and/or development in the service area?

Definitions:

Secure new employment: The project as designed will secure development/employers, which will immediately add new permanent employees to the presentation. The applying agency must submit details.

Permit more development: The project as designed will permit additional business development/employment. The applying agency must supply details.

List total percentage of "Local" funds 6 %

The project will not impact development: The project will have no impact on business development.

Note: Each project is looked at on an individual basis to determine if any aspects of this category apply.

7) Matching Funds - LOCAL

10 - This project is a loan or credit enhancement

10-50% or higher

co - 50 / 0 of higher

8 – 40% to 49.99%

6-30% to 39.99%

4 - 20% to 29.99%

2-10% to 19.99%

0 } Less than 10%

Criterion 7 - Matching Funds - Local

The percentage of matching funds which come directly from the budget of the applying agency. Ten points shall be awarded if a loan request is at least 50% of the total project cost. (If the applying agency is not a user fee funded agency, any funds to be provided by a user fee generating agency will be considered "Matching Funds — Other").

10 - 50% or higher	List below each funding so	ource and percentage
(8)-40% to 49.99%	CMAQ	A3 %
6-30% to 39.99%		 %
4 – 20% to 29.99%		
2 – 10% to 19.99%		
1 – 1% to 9.99%		
0 – Less than 1%		

Criterion 8 – Matching Funds - Other

Matching Funds - OTHER

The percentage of matching funds that come from funding sources other than those mentioned in Criterion 7. A letter from the outside funding agency stating their financial participation in the project and the amount of funding is required to receive points. For MRF, a copy of the current application form filed with the Hamilton County Engineer's Office meets the requirement.

List total percentage of "Other" funds

9) Will the project alleviate serious capacity problems or hazards or respond to the future level of service needs of the district?

10 - Project design is for future demand.	Appeal Score
8 - Project design is for partial future demand.	••
6 - Project design is for current demand.	
4 - Project design is for minimal increase in capacity.	
Project design is for no increase in capacity.	
(0) Project design is for no increase in capacity.	

Criterion 9 – Alleviate Capacity Problems

The applying agency shall provide a narrative, along with pertinent support documentation, which describe the existing deficiencies and showing how congestion will be reduced or eliminated and how service will be improved to meet the needs of any expected growth or development. A formal capacity analysis must accompany the application to receive more than 4 points. Projected traffic or demand should be calculated as follows:

Formula:

8)

Existing volume x design year factor = projected volume

<u>Design Year</u>	Design year factor								
	<u>Urban</u>	<u>Suburban</u>	Rural						
20	1.40	1.70	1.60						
10	1.20	1.35	1.30						

Definitions:

<u>Future demand</u> – Project will eliminate existing congestion or deficiencies and will provide sufficient capacity or service for twenty-year projected demand or fully developed area conditions. Justification must be supplied if the area is already largely developed or undevelopable and thus the projection factors used deviate from the above table.

<u>Partial future demand</u> – Project will eliminate existing congestion or deficiencies and will provide sufficient capacity or service for ten-year projected demand or partially developed area conditions. Justification must be supplied if the area is already largely developed or undevelopable and thus the projection factors used deviate from the above table.

<u>Current demand</u> – Project will eliminate existing congestion or deficiencies and will provide sufficient capacity or service only for existing demand and conditions.

Minimal increase – Project will reduce but not eliminate existing congestion or deficiencies and will provide a minimal but less than sufficient increase in existing capacity or service for existing demand and conditions.

No increase – Project will have no effect on existing congestion or deficiencies and provide no increase in capacity or service for existing demand and conditions.

10) Readiness to Proceed - If SCIP/LTIP funds are granted, when would the construction contract be awarded?

Will be under contract by December 31, 2009 and no delinquent projects in Rounds 20 & 21

Will be under contract by March 31, 2010 and/or one delinquent project in Rounds 20 & 21

Will not be under contract by March 31, 2010 and/or more than one delinquent project in Rounds 20 & 21

Criterion 10 - Readiness to Proceed

The Support Staff will assign points based on engineering experience and status of design plans. A project is considered delinquent when it has not received a notice to proceed within the time stated on the original application and no time extension has been granted by the OPWC. An applying agency receiving approval for a project and subsequently canceling the same after the bid date on the application will receive zero (0) points under this round and the following round.

11) Does the infrastructure have regional impact? Consider origination and destination of traffic, functional classifications, size of service area, and number of jurisdictions served, etc.

Appeal Score

Criterion 11 - Regional Impact

2 - Minimal or No Impact

The regional significance of the infrastructure that is being repaired or replaced.

Definitions:

Major Impact – Roads: Major Arterial: A direct connector to an Interstate Highway; Arterials are intended to provide a greater degree of mobility rather than land access. Arterials generally convey large traffic volumes for distances greater than one mile. A major arterial is a highway that is of regional importance and is intended to serve beyond the county. It may connect urban centers with one another and/or with outlying communities and employment or shopping centers. A major arterial is intended primarily to serve through traffic.

Significant Impact – Roads: Minor Arterial: A roadway, also serving through traffic, that is similar in function to a major arterial, but operates with lower traffic volumes, serves trips of shorter distances (but still greater than one mile), and may provide a higher degree of property access than do major arterials.

Moderate Impact – Roads: Major Collector: A roadway that provides for traffic movement between local roads/streets and arterials or community-wide activity centers and carries moderate traffic volumes over moderate distances (generally less than one mile). Major collectors may also provide direct access to abutting properties, such as regional shopping centers, large industrial parks, major subdivisions and community-wide recreational facilities, but typically not individual residences. Most major collectors are also county roads and are therefore through streets.

Minor Impact – Roads: Minor Collector: A roadway similar in functions to a major collector but which carries lower traffic volumes over shorter distances and has a higher degree of property access. Minor collectors may serve as main circulation streets within large, residential neighborhoods. Most minor collectors are also township roads and streets and may, or may not, be through streets.

Minimal or No Impact. - Roads: Local: A roadway that is primarily intended to provide access to abutting properties. It tends to accommodate lower traffic volumes, serves short trips (generally within neighborhoods), and provides connections preferably only to collector streets rather than arterials.

12)	What is the overall economic health of the jurisdiction?	
	10 Points 8 Points 6 Points 4 Points	
	2 Points	
	Criterion 12 – Economic Health The District 2 Integrating Committee predetermines the applying agency's economic health. The economic may periodically be adjusted when census and other budgetary data are updated.	c health of a jurisdiction
13)	Has any formal action by a federal, state, or local government agency resulted in a partial or comple expansion of the usage for the involved infrastructure?	ete ban of the usage or
	10 - Complete ban, facility closed 8 – 80% reduction in legal load or 4-wheeled vehicles only 7 – Moratorium on future development, <i>not</i> functioning for current demand 6 – 60% reduction in legal load	Appeal Score
	5 - Moratorium on future development, functioning for current demand 4 - 40% reduction in legal load 2 - 20% reduction in legal load Less than 20% reduction in legal load	
	Criterion 13 - Ban The applying agency shall provide documentation to show that a facility ban or moratorium has been for moratorium must have been caused by a structural or operational problem. Points will only be awarded it will cause the ban to be lifted.	
14)	What is the total number of existing daily users that will benefit as a result of the proposed project?	
	10 -30,000 or more 8 - 21,000 to 29,999 6 - 12,000 to 20,999 4 - 3,000 to 11,999 2 - 2,999 and under	
	Criterion 14 - Users The applying agency shall provide documentation. A registered professional engineer or the applying age appropriate documentation. Documentation may include current traffic counts, households served, when of persons. Public transit users are permitted to be counted for the roads and bridges, but only when cerprovided.	converted to a measurement
15)	Has the applying agency enacted the optional \$5 license plate fee, an infrastructure levy, a user fee, opertinent infrastructure? (Provide documentation of which fees have been enacted.)	or dedicated tax for the
	5- Two or more of the above 3- One of the above 0 - None of the above	Appeal Score
The ap	ion 15 – Fees, Levies, Etc. plying agency shall document (in the "Additional Support Information" form) which type of fees, levies of the type of infrastructure being applied for	or taxes they have dedicated

HCS+: Signalized Intersections Release 5.2

Analyst: CFD Agency: Barr & Prevost

Inter.: US 50 and Meadowlark Area Type: CBD or Similar

Date: 3/18/2008

Jurisd: Fairfax, Ohio

Period: 7:30 AM-8:30 AM

Year : 2008

Project ID: AM existing conditions

E/W St: US 50

N/S St: Meadowlark/Wooster Pike

	l Ea	stbou			stbou		CTION	thbou		l so:	uthbo	ind	
	i L	T	R	, we.	T	R	L	T	R	, 301 L	T	una R	1
	l			l			_i			. – I	_	• • •	į
No. Lanes	1 1		0	1 1	2	0	1 1	1.	0	1	1	0	'
LGConfig	L	TR		L	TR		L	TR		L	TR		1
Volume Lane Width	111	285		J91	765	11	128	14		21	16	35	- 1
RTOR Vol	12.0	12.0	20	12.0	12.0	-	12.0	12.0		12.0	12.0		İ
KIOK VOI	ì		20	1		5	,		100	!		10	1
Duration	1.00		Area '			or Sim Operat						<u> </u>	
Phase Comb:	inatio	n 1	2	3	ا بندند 4	l Jherar	.rons	5				 3	
EB Left		P	₽	J	•	 NB	Left	P	U	,	(5	
Thru			P				Thru	P					
Right			₽			i	Right						
Peds						1	Peds	Х					
WB Left		P	P			SB	Left	P					
Thru			P			ļ	Thru	P					
Right			₽			l	Right	P					
Peds						ļ	Peds						
NB Right SB Right						EB	Right						
on Kranc													
_		79 N	37 N) WB	Right						
Green		19.0	37.0 3.0) WB	Kight	24.0					
Green Yellow		19.0	3.0			, wb	Kight	24.0 3.0					
Green Yellow						, wb	Kight	24.0 3.0 2.0		ıqth:	90.0		secs
Green Yellow All Red		0.0 In	3.0 2.0 itersec	tion:	Perfo		kight e Summ	24.0 3.0 2.0 Cyc	le Len	ıgth:	90.0	2	secs
Green Yellow All Red Appr/ Lan		0.0 In Adj	3.0 2.0 itersec		Perfo		-	24.0 3.0 2.0 Cyc ary_	le Len	igth:			secs
Green Yellow All Red Appr/ Lan Lane Gro	эпБ	0.0 In Adj Flow	3.0 2.0 stersed Sat Rate	Ra	tios	ormanc	e Summ Lane	24.0 3.0 2.0 Cyc ary_ Group	le Len	roach	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro		0.0 In Adj Flow	3.0 2.0 itersec			ormanc	e Summ	24.0 3.0 2.0 Cyc ary_ Group	le Len		<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap	эпБ	0.0 In Adj Flow	3.0 2.0 stersed Sat Rate	Ra	tios	ormanc	e Summ Lane	24.0 3.0 2.0 Cyc ary_ Group	le Len	roach	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 42	oup eacity	O.O In Adj Flow (3.0 2.0 stersed Sat Rate s)	Ra	g/ 0.	ormanc C	e Summ Lane	24.0 3.0 2.0 Cyc ary_ Group	le Len	roach	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Castbound L 42	oup pacity	0.0 In Adj Flow (3.0 2.0 stersed Sat Rate s)	Ra v/c	g/ 0.	ormanc C	e Summ Lane Delay	24.0 3.0 2.0 Cyc ary Group	le Len	roach	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 42 FR 12	oup eacity	O.O In Adj Flow (3.0 2.0 stersed Sat Rate s)	0.03	g/ 0.	ormanc C	e Summ Lane Delay	24.0 3.0 2.0 Cyc ary Group LOS	App	roach	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 42 TR 12	oup acity 9	O.O In Adj Flow (3.0 2.0 setersed Sat Rate s)	0.03	g/ 0.	ormanc C	e Summ Lane Delay	24.0 3.0 2.0 Cyc ary Group LOS	App	roach	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 42 TR 12 Westbound L 63	oup acity 9	0.0 In Adj Flow (162 305	3.0 2.0 Atersec Sat Rate s)	0.03	g/ 0. 0.	0rmanc /C 62 41	e Summ Lane Delay 8.4 18.3	24.0 3.0 2.0 Cyc ary Group LOS	App	y Los	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 42 FR 12 Westbound L 63 FR 12 Northbound	eacity 9 154 4 69	0.0 In Adj Flow (162 305	3.0 2.0 sat Rate s) 4 0	0.03 0.29 0.16 0.68	g/ 0. 0.	62 41	e Summ Lane Delay 8.4 18.3	24.0 3.0 2.0 Cyc ary Group LOS	App Dela	y Los	<u> </u>	4	secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 42 FR 12 Westbound L 63 FR 12 Northbound L 33	eup pacity 9 54 69	0.0 In Adj Flow (162 305 162 308	3.0 2.0 stersed sat (Rate s) 4 0	V/c 0.03 0.29 0.16 0.68	g/ 0. 0.	62 41 62	e Summ Lane Delay 8.4 18.3 7.6 24.5	24.0 3.0 2.0 Cyc ary Group LOS	App Dela	y Los	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 42 PR 12 Vestbound L 63 PR 12 Northbound L 33	eup pacity 9 54 69	0.0 In Adj Flow (162 305	3.0 2.0 stersed sat (Rate s) 4 0	0.03 0.29 0.16 0.68	g/ 0. 0.	62 41	e Summ Lane Delay 8.4 18.3 7.6 24.5	24.0 3.0 2.0 Cyc ary Group LOS A B	App Dela	y LOS	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 42 PR 12 Vestbound L 63 PR 12 Northbound L 33	eup pacity 9 54 69	0.0 In Adj Flow (162 305 162 308	3.0 2.0 stersed sat (Rate s) 4 0	V/c 0.03 0.29 0.16 0.68	g/ 0. 0.	62 41 62	e Summ Lane Delay 8.4 18.3 7.6 24.5	24.0 3.0 2.0 Cyc ary Group LOS A B	App Dela 18.0	y LOS	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 42 TR 12 Westbound L 63 TR 12 Northbound L 33	eup Pacity 19 154 4 69	0.0 In Adj Flow (162 305 162 308	3.0 2.0 stersed sat Rate s) 4 0	V/c 0.03 0.29 0.16 0.68	0. 0. 0.	62 41 62 41 27 27	e Summ Lane Delay 8.4 18.3 7.6 24.5	24.0 3.0 2.0 Cyc ary Group LOS A B C C	App Dela 18.0	y LOS	<u> </u>		secs
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 42 TR 12 Westbound L 63 TR 12 Northbound L 33 TR 39	eup Pacity 19 154 69	0.0 In Adj Flow (162 305 162 308 124 148	3.0 2.0 sat Rate s) 4 0	V/c 0.03 0.29 0.16 0.68	0. 0. 0.	62 41 62	e Summ Lane Delay 8.4 18.3 7.6 24.5	24.0 3.0 2.0 Cyc ary Group LOS A B	App Dela 18.0	y LOS B	<u> </u>		secs

Pha	se Combination	n 1	2	3	4	ł		5	б	7	8
ЕВ	Left Thru Right Peds	P	P P P			N] 	B Left Thru Right Peds	P P X			
В	Left Thru Right Peds	P	P P P			SI 	Left Thru Right Peds	ъ Б			
NB	Right					EE	B Right				
SB	Right					WE	Right				
	en low Red	19.0	37.0 3.0 2.0			I		24.0 3.0 2.0			

Cycle Length: 90.0 secs

	ADJUSTMENT	AND	SATURATION	E.TOM	WORKSHEET
Volume Adjustment					_

VOLUM	e Auju		- stbou	n d	l Wa	stbou	a ~!	t NT	0 x+ hha		Southbound !			
		L	T					,	orthbo		,			
		I Г т	T	R	L	T	R	L	Т	R	L	T	R	
Volum	e, V	$\frac{1}{11}$	285	59	91	765	11	-¦ <u></u> -	14	202	121	16	35	
PHF		10.90	0.90	0.90	0.90	0.90	0.90	10.9	0 0.90	0.90	10.90	0.90	0.90	
Adj fi	low	12	317	43	101	850	7	31	16	113	123	18	28	
No. L	anes	1	2	0	1	2	0	1	1 1	0] 1	1	0	
Lane o	group	L	TR		L	TR		L	TR		L	ΤR		
Adj f		12	360		101	857		131	129		23	46		
	LTs			0.0	1.00	0.00	0 0	1.0	0.0	00	1.000	0.0	00	
Prop !	RTs	0.	.119		0	.008		1	0.876		0.	609		
	Ea	stbour			lestb:	ound		Nor	thboun		ustmer Soı	ithbo	und	
LG	L	TR		${f L}$	T			Ŀ	TR		L	TR		
So	1900	1900		1900				1900			1900	190	0	
	1	2	_	1	2	0		1	1	0	1	1	-	
fW	1.000				00 1.0				1.000		1.000			
fHV	1.000				00 0.9				1.000		1.000			
fG £n	1.000				00 1.0				1.000		1.000			
fP	1.000				00 1.0				1.000		1.000			
fBB fA	1.000				0 0.9				1.000		1.000			
fLU	0.900				00 0.9				0.900		0.900			
fRT	1.000	0.932		1.00	0 0.9			1.000	1.000		1.000			
fLT	0.950			0.05		999		0 707	0.869		0 675	0.9		
Sec.	0.185	1.000	ı	0.95	0 1.0	JUU		U. /Z/	1.000		0.672	1.0	00	
fLpb	1.000	1 000)		94 90 1.(300		1 000	1 000		1 000	1 1 0	3.0	
fRpb	1.000	1.000		1.00		300 300		1.000	1.000		1.000			
S	1624	3050	,	1624				1243	1.000		1140	1.0		
Sec.	316	0.00		776	1 201	5 Q		1742	T400		1149	155	4	
500.	210				מא מידיתי	ביוור ז	TOS :	WORKS:	ಇದ್ದು ಗು					
				CA	MCII.	r Whith	TOO	MORVE						

Capacity Analysis and Lane Group Capacity

SUPPLEMENTAL PERMITTED LT WORKSHEET

for exclusive lefts				
Input				
Omnored her Girls I am a service and a servi	EΒ	WB	NB	SB
Opposed by Single(S) or Multiple(M) lane approach	M	M	M	M
Cycle length, C 90.0 sec				
Total actual green time for LT lane group, G (s)	56.0	56.0	24.0	24.0
Effective permitted green time for LT lane group, g(s)	40.0	40.0	24.0	24.0
Opposing effective green time, go (s)	37.0	37.0	24.0	24.0
Number of lanes in LT lane group, N	1	1	1	1
Number of lanes in opposing approach, No	2	2	1	1
Adjusted LT flow rate, VLT (veh/h)	12	101	31	23
Proportion of LT in LT lane group, PLT	1.000	1.000	1.000	1.000
Proportion of LT in opposing flow, PLTo	0.00	0.00	0.00	0.00
Adjusted opposing flow rate, Vo (veh/h)	857	360	46	129
Lost time for LT lane group, tL	5.00	5.00	5.00	5.00
Computation				
LT volume per cycle, LTC=VLTC/3600	0.30		0.78	0.57
Opposing lane util. factor, fLVo	0.952	0.952	1.000	1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)	11.25	4.73	1.15	3.22
gf=G[exp(- a * (LTC ** b))]-t1, gf<=g	0.0	0.0	0.0	0.0
Opposing platoon ratio, Rpo (refer Exhibit 16-11)	1.00	1.00	1.00	1.00
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]	0.59	0.59	0.73	0.73
gq, (see Exhibit C16-4,5,6,7,8)	17.67	6.22	0.00	0.10
gu=g-gq if $gq>=gf$, or = $g-gf$ if $gq22.3333.7824.0023.90$	22.33	33.78	24.00	23.90
n=Max(gq-gf)/2,0)	8.84	3.11	0.00	0.05
PTHo=1-PLTo	1.00	1.00	1.00	1.00
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]	1.00	1.00	1.00	1.00
EL1 (refer to Exhibit C16-3)	3.02	1.86	1.38	1.48
EL2=Max((1-Ptho**n)/Plto, 1.0)				
fmin=2(1+PL)/g or fmin=2(1+Pl)/g	0.10	0.10	0.17	0.17
gdiff=max(gq-gf,0)	0.00	0.00	0.00	0.00
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)	0.18	0.45	0.73	0.67
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-0r flt=[fm+0.91(N-1)]/N**	-1)],(i	Emin<=i	fm<=1.0	00)
Left-turn adjustment, fLT	0.185	0.454	0.727	0.672

For special case of single-lane approach opposed by multilane approach, see text.

SUPPLEMENTAL PERMITTED LT WORKSHEET

for shared lefts

Input

EB WB NB SB

Opposed by Single(S) or Multiple(M) lane approach Cycle length, C 90.0 sec Total actual green time for LT lane group, G (s) Effective permitted green time for LT lane group, g(s) Opposing effective green time, go (s) Number of lanes in LT lane group, N

^{*} If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.

^{**} For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

Number ApbT Propor Propor	g of cross of turni tion righ tion righ turn adju	.ng lanes ut-turns, ut-turns	PRT using pr			RTA		0.020 0.000 2 1 1.000 0.876 0.000 1.000	
		st	JPPLEMENT	'AL UNIFO	RM DELAY	WORKSHE	ET		
SUPPLEMENTAL UNIFORM DELAY WORKSHEET EBLT WBLT NBLT SBLT Cycle length, C 90.0 sec Adj. LT vol from Vol Adjustment Worksheet, V 12 101 V/c ratio from Capacity Worksheet, X 0.03 0.16 Protected phase effective green interval, g (s) 16.0 16.0 Opposing queue effective green interval, gq 17.67 6.22 Unopposed green interval, gu 22.33 33.78 Red time r=(C-g-gq-gu) 34.0 34.0 Arrival rate, qa=v/(3600(max[X,1.0])) 0.00 0.03 Protected ph. departure rate, Sp=s/3600 0.451 0.451 Permitted ph. departure rate, Ss=s(gq+gu)/(gu*3600) 0.16 0.26 XPerm 0.04 0.13 XProt 0.02 0.19 Case 1 1 Queue at beginning of green arrow, Qa 0.11 0.95 Queue at beginning of unsaturated green, Qu 0.06 0.17 Residual queue, Qr 0.00 0.00 Uniform Delay, dl 8.2 7.1									
Appr/ Lane Group	Initial Unmet Demand Q veh	Unmet Demand	Uniform Unadj. ds	Delay Adj. dl sec	Initial Queue Param. u	Final Unmet Demand Q veh	Initial Queue Delay d3 sec	Group Delay	
Eastbou	ınd	-mn			**************************************				
L TR	0.0 0.0 0.0	0.00	26.5	8.2 17.7	0.00	0.0	0.0 0.0 0.0	8.4 18.3	
Westbou									
L TR	0.0 0.0 0.0	0.00	26.5	7.1 21.6	0.00	0.0	0.0 0.0 0.0	7.6 24.5	
Northbo L TR	0.0 0.0 0.0 0.0	0.00	33.0 33.0	24.8 26.5	0.00	0.0	0.0 0.0 0.0	25.4 28.7	
Southbo L TR	0.0 0.0 0.0 0.0	0.00	33.0 33.0	24.7 24.9	0.00	0.0	0.0 0.0 0.0	25.2 25.5	

Intersection Delay 22.3 sec/veh Intersection LOS C

BACK OF QUEUE WORKSHEET_____

HCS+: Signalized Intersections Release 5.2

Analyst: CFD

Agency: Barr & Prevost

Date: 3/18/2008

Period: 4:45 PM-5:45 PM

Project ID: PM Existing Conditions E/W St: US 50

Inter.: US 50 and Meadowlark Area Type: CBD or Similar Jurisd: Fairfax, Ohio

Year : 2008

N/C Ct. Mondaylank/Wassha

Lagrangian Lag	E/W St: US	50					И/5	S St: 1	Meado	wlark/	Woost	er Pi	ke	
L T R L T R L T R L T R L T R L T R					GNALI:	ZED I	NTERSI	ECTION	SUMM	ARY				
No. Lanes		Eas	stbound	d	l We	stbou	ınd	Noi	cthbo	und	So	uthbo	und	1
Coconfig		[L	${f T}$	R	L	T	R	L	T	R	L	${f T}$	R	
Volume	No. Lanes	j 1	2	0	, —— <u>—</u>	2	0	-¦	1	1.	1	1	0	¦
Area Width 12.0 1	LGConfig	L	\mathtt{TR}		L	TR		1	$_{ m LT}$	R	L	TR		j
Area Width 12.0 1	Volume	87	686 3	38	1120	370	1.1	85	11	171	28	10	29	ĺ
	Lane Width	12.0	12.0		12.0	12.0		1						i
Signal Operations Signal Operations	RTOR Vol	1	(Ī			į			İ		0	i
## Property of the property of	Duration	1.00		Area C					** ***********************************					
EB Left	Phase Combi	nation	. 1	2				llons	<u>-</u> -				<u> </u>	
Thru Right P Right P Peds X Thru P Right P Peds X Thru P Peds X Thr					J	4	•	T 0 * 5 + *		Ö	,	i	O	
Right Peds X Peds Peds Peds Peds Peds Peds Peds Peds			r.				1 1 14 E2							
Peds Peds							I							
SB	_			P			1	_						
Thru P Thru P Right P Right P Peds			175	75										
Right Peds Ped			F				SB							
Peds Pe							1							
## Right	_			P			1		P					
B Right WB Right 24.0 24.0 24.0 24.0 2.0							-							
19.0 37.0 24.0	_						EB	Right	:					
Second S	BB Right						WB	Right	:					
Comparison Com	Green		19.0	37.0					24.0					
Cycle Length: 90.0 sec Intersection Performance Summary Adj Sat Ratios Lane Group Approach Capacity (s) V/c g/c Delay LOS Delay LOS astbound 578 1605 0.17 0.62 7.8 A R 1268 3084 0.63 0.41 23.6 C 21.9 C estbound 424 1624 0.31 0.62 10.8 B R 1271 3092 0.33 0.41 18.8 B 16.9 B orthbound T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C	'ellow			3.0					3.0					
Intersection Performance Summary ppr/ Lane Adj Sat Ratios Lane Group Approach ane Group Flow Rate pp Capacity (s) V/c g/C Delay LOS Delay LOS astbound 578 1605 0.17 0.62 7.8 A R 1268 3084 0.63 0.41 23.6 C 21.9 C estbound 424 1624 0.31 0.62 10.8 B R 1271 3092 0.33 0.41 18.8 B 16.9 B orthbound T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C	ll Red			2.0					2.0					
### Adj Sat Ratios Lane Group Approach Representation										cle Le	ngth:	90.0		sec
The state of the s											·			
Exp Capacity (s) v/c g/C Delay LOS Delay LOS astbound 578 1605 0.17 0.62 7.8 A R 1268 3084 0.63 0.41 23.6 C 21.9 C estbound 424 1624 0.31 0.62 10.8 B R 1271 3092 0.33 0.41 18.8 B 16.9 B orthbound T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C			_		Ra	atios		Lane	Group	o Apj	proach	1		
astbound 578 1605 0.17 0.62 7.8 A R 1268 3084 0.63 0.41 23.6 C 21.9 C estbound 424 1624 0.31 0.62 10.8 B R 1271 3092 0.33 0.41 18.8 B 16.9 B orthbound T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C		-	Flow	Rate										
578 1605 0.17 0.62 7.8 A R 1268 3084 0.63 0.41 23.6 C 21.9 C estbound 424 1624 0.31 0.62 10.8 B R 1271 3092 0.33 0.41 18.8 B 16.9 B orthbound T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C	rp Cap	acity	(s	;)	v/c	g	/c	Delay	LOS	Del	ay Los	3		
R 1268 3084 0.63 0.41 23.6 C 21.9 C estbound 424 1624 0.31 0.62 10.8 B R 1271 3092 0.33 0.41 18.8 B 16.9 B orthbound T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C	astbound			778711.			****							
estbound 424 1624 0.31 0.62 10.8 B R 1271 3092 0.33 0.41 18.8 B 16.9 B orthbound T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C							.62		A					
424 1624 0.31 0.62 10.8 B R 1271 3092 0.33 0.41 18.8 B 16.9 B orthbound T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C	'R 12	68	3084	Į.	0.63	3 0	.41	23.6	C	21.	9 C			
R 1271 3092 0.33 0.41 18.8 B 16.9 B orthbound T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C	estbound													
orthbound T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C							.62	10.8	В					
T 328 1230 0.32 0.27 29.1 C 28.8 C 388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C	R 12	71	3092		0.33	3 0	.41	18.8	В	16.	9 в			
388 1454 0.32 0.27 28.6 C outhbound 314 1177 0.10 0.27 25.5 C	orthbound													
outhbound 314 1177 0.10 0.27 25.5 C					0.32	. 0	. 27	29.1	С	28.	3 C			
outhbound 314 1177 0.10 0.27 25.5 C		8	1454		0.32	. 0	. 27	28.6	С					
	outhbound													
	31	4	1177		0.10	0	.27	25.5	С					
	R 40	5								25.	5 C			

Intersection Delay = 21.3 (sec/veh) Intersection LOS = C

Pha	se Combinatio	n 1	2	3	4	I			5	6	7	8
EΒ	Left Thru Right Peds	P	P P			 	NB	Left Thru Right Peds	P P X			
WB	Left Thru Right Peds	P	P P P				SB	Left Thru Right Peds	P P			
NB	Right					ĺ	ΕB	Right				
SB	Right						WB	Right				
Gre Yel All		19.0	37.0 3.0 2.0]			24.0 3.0 2.0			

Cycle Length: 90.0 secs

VOLUME ADJUSTMENT AND SATURATION FLOW WORKSHEET

37 - 1 7 -1.	<u> </u>												
Volume Ad	justmen	.t											
	Eastbound			Westbound			No	Northbound			Southbound		
	L	\mathbf{T}	R	l L	\mathbf{T}	R	L	${f T}$	R	L	${f T}$	R	
				<u> </u>			_			1]	
Volume, V	•	686	38	1120	370	11	85	11	171	28	1.0	29	
PHF	10.90	0.90	0.90	0.90	0.90	0.90	10.90	0.90	0.90	10.90	0.90	0.90	
Adj flow	197	762	42	133	411	12	94	12	123	31	11	32	
No. Lanes	1	2	0	1	2	0	0	1	1	1	1	0 i	
Lane group) L	TR		Į L	TR]	$_{ m LT}$	R	L	TR	ĺ	
Adj flow	97	804		133	423		1	106	123	131	43	1	
Prop LTs	1.00	0 0.00	00	1.000	0.0	0.0	1	0.8	87	11.000	0.00	00 1	
Prop RTs	1 0	.052		0.	.028		0	.000	1.000	0	.744	i	
	_			•								,	
Saturation	1 Flow	Rate	(see E	xhibit	16	7 to d	leterm	ine t	he adj	ustmen	nt fac	ctors}	
	Eastbou	nd	•	Westbo	ound		Nort:	hboun	d	Sot	ıthboı	ind -	
LG L	TR		L	TF	₹			LT	R	L	TR		
So 1900	1900		190	0 190	00			1900	1900	1900	1900)	
Lanes l	2	0	1	2	0	C	,	1	7	1	1	n	

		stboun	d	₩e	stbound	d	Nor	thboun	d	Sou	thbound	E
LG	L	TR		L	TR			\mathtt{LT}	R	Ŀ	TR	
So	1900	1900		1900	1900			1900	1900	1900	1900	
Lanes	1	2	0	1	2	0	0	1	1	1	1	0
ΪW	1.000	1.000		1.000	1.000			1.000	1.000	1.000	1.000	
fHV	1.000	0.955		1.000	0.954					1.000		
fG	1.000	1.000		1.000	1.000					1.000		
ÍΡ	1.000	1.000		1.000	1.000							
fBB	0.988	1.000		1.000	1.000			1.000	1.000	1.000	1,000	
fA	0.900	0.900		0.900	0.900					0.900		
fLU	1.000	0.952		1.000	0.952			1.000	1.000	1.000	1.000	
ÍRT		0.992			0.996			1.000	0.850		0.888	
\mathtt{fLT}	0.950	1.000		0.950	1.000					0.689		
Sec.	0.416			0.214								
fLpb	1.000	1.000		1.000	1.000			1.000		1.000	1,000	
fRpb		1.000			1.000				1.000		1.000	
S	1.605	3084		1624	3092				1454		1519	
Sec.	702			366								
				CAPA	ITY AN	ND LOS	WORKS	HEET				
Capac	ity Ana	alysis	and L	 ane Gro					~~~			
-		-										

SUPPLEMENTAL	PERMITTED	LT	WORKSHEET
for =	walneine l	~ = +	

for exclusive lefts				
Input				
	EB	WB N	В	SB
Opposed by Single(S) or Multiple(M) lane approach	M	M		M
Cycle length, C 90.0 sec				
Total actual green time for LT lane group, G (s)	56.0	56.0		24.0
Effective permitted green time for LT lane group, g(s)		42.0		24.0
Opposing effective green time, go (s) Number of lanes in LT lane group, N	37.0	37.0		24.0
Number of lanes in opposing approach, No	1	1		1
Adjusted LT flow rate, VLT (veh/h)	2	2		1
Proportion of LT in LT lane group, PLT	97	133		31
Proportion of LT in opposing flow, PLTo	0.00	1.000		1.000
Adjusted opposing flow rate, Vo (veh/h)	423	804		0.89 106
Lost time for LT lane group, tL	5.00	5.00		5.00
Computation	3.00	3.00		3.00
LT volume per cycle, LTC=VLTC/3600	2.42	3.33		0.78
Opposing lane util. factor, fLUo		0.952 1	.000	
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)	5.55	10.56		2.65
gf=G[exp(- a * (LTC ** b))]-tl, gf<=g	0.0	0.0		0.0
Opposing platoon ratio, Rpo (refer Exhibit 16-11)	1.00	1.00		1.00
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]	0.59	0.59		0.73
gq, (see Exhibit C16-4,5,6,7,8)	7.46	16.24		0.00
gu=g-gq if $gq>=gf$, or = $g-gf$ if $gq n=Max(gq-gf)/2,0)$		25.76		24.00
PTHO=1-PLTo	3.73			0.00
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]	1.00	1.00	-	0.11
EL1 (refer to Exhibit C16-3)	1.00			1.00
EL2=Max((1-Ptho**n)/Plto, 1.0)	1.98	2.87		1.45
fmin=2(1+PL)/g or fmin=2(1+Pl)/q	0.10	0.10		1.00
gdiff=max(gq-gf,0)	0.00	0.10		0.17
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)	0.42	0.21		0.69
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)]	·]}]_/f	o.∴ı min<=fm<	c=1 0	0.05
or rrt=[rm+0.91(N-1)]/N**	-1111		- ,x, = W	~ /
Left-turn adjustment, fLT	0.416	0.214		0.689

For special case of single-lane approach opposed by multilane approach, see text.

^{**} For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

SUPPLEMENTAL PERMITTED LT WORKS	HEET			
for shared lefts Input		***************************************		
Opposed by Single(S) or Multiple(M) lane approach Cycle length, C 90.0 sec	EB	₩B	NB M	SB
Total actual green time for LT lane group, G (s) Effective permitted green time for LT lane group, g(s	١		24.0 24.0	
Opposing effective green time, go (s) Number of lanes in LT lane group, N	i		24.0	
			Т.	

^{*} If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.

OCCbicg	0.020
OCCr	0.020
Number of cross-street receiving lanes, Nrec	2
Number of turning lanes, Mturn	1
ApbT	1.000
Proportion right-turns, PRT	1.000
Proportion right-turns using protected phase, PRTA	0.000
Right turn adjustment, fRpb	

Adj. LT vol from Vol Adjustment Worksheet, v 97 v/c ratio from Capacity Worksheet, X 0.17 (Protected phase effective green interval, g (s) 14.0 Copposing queue effective green interval, gq 7.46	0.31 14.0	
Unopposed green interval, gu Red time r=(C-g-gq-gu) Arrival rate, qa=v/(3600(max[X,1.0])) Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Ss=s(gq+gu)/(gu*3600) XPerm XProt Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Ou 34.54 34.0 34	25.76 34.0 0.04 0.451 0.17 0.36 0.28 1	
Residual queue, Qr 0.00 0 Uniform Delay, d1 7.2	0.00	

DELAY/LOS WORKSHEET WITH INITIAL QUEUE_____

Appr/ Lane Group	Initial Unmet Demand Q veh	Dur. Unmet Demand t hrs.	Uniform Unadj.	Adj. dl sec	Initial Queue Param. u	Final Unmet Demand Q veh	Initial Queue Delay d3 sec	Group Delay
Eastbou	nd							
L TR	0.0 0.0 0.0	0.00 0.00	26.5	7.2 21.1	0.00	0.0	0.0 0.0 0.0	7.8 23.6
Westbou	nd							
L TR	0.0 0.0 0.0	0.00	26.5	8.9 18.1	0.00	0.0	0.0 0.0 0.0	10.8
Northbo	und							
	0.0						0.0	
LT R	0.0	0.00	33.0 33.0	26.5 26.4	0.00 0.00	0.0	0.0	29.1 28.6
Southbox	und							
L TR	0.0 0.0 0.0	0.00	33.0 33.0	24.9 24.9	0.00	0.0	0.0 0.0 0.0	25.5 25.4

Intersection Delay 21.3 sec/veh Intersection LOS C

BACK OF QUEUE WORKSHEET_____

HCS+: Signalized Intersections Release 5.2

Analyst: CFD

Inter.: Wooster and Watterson

Agency: Barr & Prevost

Area Type: CBD or Similar

Date: 3/18/2008

Jurisd: Fairfax, Ohio

Period: 7:30 AM-8:30 AM

Year : 2008

Project ID: Wooster and Watterson Existing

E/W St: US 50

N/S St: Watterson

Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capacity (s) v/c g/C Delay LOS Delay LOS Eastbound LTR 1529 2698 0.32 0.57 7.5 A 7.5 A Westbound											
	•										i
	1	1 1	11	I K	1 1	‡	K 1	1.1	1	K	!
No. Lane	es 0	2 0	0	2 0	i	1	0 i	0	1	0	;
LGConfig	j l	LTR	ļ.,	LTR	1	LTR	1		LTI	R	ĺ
					3) [88		52	I
	•		1		!		. !		12.0		l
KIOK AOT	. 1	O (10	l	C	3			0	I
Duration	1.00	Area 1	Type: C	BD or Sin	nilar						···
		·· -			ions	·····					
			3	•	<u></u> .		6	7	{	В	
				INB							
				i							
_		P		; !	-	P					
		Þ		1 1 5 B		Ð					
				1							
Righ	ıt			i							
_				i	_						
NB Righ	t			EB	Right						
SB Righ	it			WB	_						
						16.0					
						3.0					
All Red		2.0		-					•	•	
		7 - t					e Len	gth:	60.0	;	secs
Appr/	Tane						700	waaah			
		_	Nat.	105	папе	group	App.	LOACH			
	-		v/c	g/C	Delay	LOS	Dela	y Los			
Fasthoun	.d					 			·····		.
Edstboun	·u										
LTR	1529	2698	0.32	0.57	7.5	A	7.5	A			
Westboun	d										
LTR	1662	2933	0.64	0.57	10.8	В	10.8	В			
Northbou	nd										
LTR	402	1507	0.01	0.27	16.2	В	16.2	В			
Southbou	nd										
		1 2 1 4	0 45	0 07	22.5	~	25.5				
TIL	350	1314	0.45	0.27	ZZ.6	Ü	22.6	С			
	- - 4										

Intersection Delay = 11.0 (sec/veh) Intersection LOS = B

Phas	se Combinatior	ı 1	2	3	4			5	6	7	8
EB	Left Thru Right Peds	P P				NB 	Left Thru Right Peds	P P P			
WB	Left Thru Right Peds	P P P				SB 	Left Thru Right Peds	P P P			
NB	Right					EB	Right				
SB	Right					WB	Right				
Gree Yell All	.ow	34.0 3.0 2.0				ı		16.0 3.0 2.0			

Cycle Length: 60.0 secs

VOLUME ADJUSTMENT AND SATURATION FLOW WORKSHEET

Volume Adju	ıstmen	t t			•							
	Eas	stbou:	nd	Westbound			No	rthbo	und	Southbound		
	L	${f T}$	R	l L	\mathbf{T}	R	l L	${f T}$	R	L	${f T}$	R
	ļ						_1			1		
Volume, V	126	417	3	1	877	96	_ 3	2	0	188	2	52
PHF	10.90	0.90	0.90	10.9	0 0.90	0.90	10.90	0.90	0.90	10.90	0.90	0.90
Adj flow	129	463	3	1	974	96	13	2	0	98	2	58
No. Lanes	1 0	2	0	1	0 2	0	0	1	0	i o	1.	0
Lane group	1	LT	R		LTI	R		LT.	R	ì	LT	R
Adj flow		495		1	1071		1	5		į	158	
Prop LTs	1	0.0	59	1	0.0	01		0.6	00	į	0.6	2.0
Prop RTs	1 0.	.006		1	0.090		i a	.000		i o	.367	4

Saturatio				adjustment factors)
	Eastbound	Westbound	Northbound	Southbound
LG	LTR	LTR	LTR	LTR
So	1900	1900	1900	1900
Lanes 0	2 0	0 2 0	0 1 0	0 1 0
fW	1.000	1.000	1.000	1.000
fHV	0.955	0.957	1.000	1.000
fG	1.000	1.000	1.000	1.000
fP	1.000	1.000	1.000	1.000
fBB	1.000	1.000	1.000	1.000
fA	0.900	0.900	0.900	0.900
fLU	0.952	0.952	1.000	1.000
fRT	0.999	0.987	1.000	0.950
\mathtt{fLT}	0.868	0.955	0.881	0.808
Sec.				0,000
fLpb	1.000	1.000	1.000	1.000
fRpb	1.000	1.000	1.000	1.000
S	2698	2933	1507	1314
Sec.				
		CAPACITY AND I	OS WORKSHEET	

CAPACITY AND LOS WORKSHEET
Capacity Analysis and Lane Group Capacity

```
SUPPLEMENTAL PERMITTED LT WORKSHEET
                               for exclusive lefts
 Input
                                                         EΒ
                                                               WB
                                                                     NB
                                                                           SB
 Opposed by Single(S) or Multiple(M) lane approach
 Cycle length, C
 Total actual green time for LT lane group, G (s)
 Effective permitted green time for LT lane group, q(s)
 Opposing effective green time, go (s)
 Number of lanes in LT lane group, N
 Number of lanes in opposing approach, No
 Adjusted LT flow rate, VLT (veh/h)
 Proportion of LT in LT lane group, PLT
 Proportion of LT in opposing flow, PLTo
 Adjusted opposing flow rate, Vo (veh/h)
 Lost time for LT lane group, tL
 Computation
 LT volume per cycle, LTC=VLTC/3600
Opposing lane util. factor, fLUo
                                                        0.952 0.952 1.000 1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
gf=G[exp(- a * (LTC ** b))]-tl, gf<=g
Opposing platoon ratio, Rpo (refer Exhibit 16-11)
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
gq, (see Exhibit C16-4,5,6,7,8)
gu=g-gq if gq>=gf, or = g-gf if gq<qf
n=Max(qq-qf)/2,0)
PTHo=1-PLTo
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]
EL1 (refer to Exhibit C16-3)
EL2=Max((1-Ptho**n)/Plto, 1.0)
fmin=2(1+PL)/g or fmin=2(1+P1)/g
gdiff=max(gq-gf,0)
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)], (fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
For special case of single-lane approach opposed by multilane approach,
see text.
* If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto
  left-turn lane and redo calculations.
** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm.
For special case of multilane approach opposed by single-lane approach
or when gf>gq, see text.
                      SUPPLEMENTAL PERMITTED LT WORKSHEET
                                for shared lefts
Input
                                                        EΒ
                                                              WB
                                                                    NB
                                                                          SB
Opposed by Single(S) or Multiple(M) lane approach
                                                              М
                                                                    5
                                                                          S
Cycle length, C
                                           60.0
                                                  sec
Total actual green time for LT lane group, G (s)
                                                        34.0 34.0
                                                                    16.0
                                                                          16.0
Effective permitted green time for LT lane group, g(s) 34.0 34.0
                                                                    16.0
                                                                          16.0
Opposing effective green time, go (s)
                                                        34.0 34.0
                                                                    16.0
                                                                         16.0
Number of lanes in LT lane group, N
                                                              2
                                                                    1
                                                                          1
```

OCCbicg
OCCr
Number of cross-street receiving lanes, Nrec
Number of turning lanes, Nturn
ApbT
Proportion right-turns, PRT
Proportion right-turns using protected phase, PRTA
Right turn adjustment, fRpb

SUPPLEMENTAL UNIFORM DELAY WORKSHEET

EBLT WBLT NBLT SBLT

Cycle length, C 60.0 sec Adj. LT vol from Vol Adjustment Worksheet, v v/c ratio from Capacity Worksheet, X Protected phase effective green interval, g (s) Opposing queue effective green interval, gq Unopposed green interval, gu Red time r=(C-g-gq-gu)Arrival rate, qa=v/(3600(max[X,1.0]))Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Ss=s(gq+gu)/(gu*3600) XPerm XProt Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Qu Residual queue, Or Uniform Delay, dl

_DELAY/LOS WORKSHEET WITH INITIAL QUEUE Initial Dur. Uniform Delay Initial Final Initial Lane Appr/ Unmet Unmet Queue Unmet Queue Demand Demand Unadj. Lane Adj. Param. Demand Delay Delay Group Q veh t hrs. ds dl sec d3 sec d sec u Q veh Eastbound 0.0 0.0 LTR 0.0 0.00 13.0 6.9 0.00 0.0 0.0 7.5 0.0 0.0 Westbound 0.0 0.0 LTR 0.0 0.00 13.0 8.9 0.00 0.0 0.0 10.8 0.0 0.0 Northbound 0.0 0.0 LTR 0.0 0.00 22.0 16.2 0.00 0.0 0.0 16.2 0.0 0.0 Southbound 0.0 0.0 LTR 0.0 0.00 22.0 18.3 0.00 0.0 0.0 22.6 0.0 0.0

Intersection Delay 11.0 sec/veh Intersection LOS B

BACK OF QUEUE WORKSHEET

Analyst: CFD

Agency: Barr & Prevost

Inter.: Wooster and Watterson Area Type: CBD or Similar

Jurisd: Fairfax, Ohio

Date: 3/18/2008

Period: 4:45 PM-5:45 PM

Year : 2008

Project ID: Wooster and Watterson Existing

E/W st: Us 50

N/S St: Watterson

	l Mas			D INTERSE						
	L	stbound T R	-	bound T R		thbour			thbound	•
	1	I K	1 4	T R	L	T	R	L	T R	!
No. Lane	s 0	2 0	ì o	2 0	-	1	¦	0	1 0	¦
LGConfig	ł	LTR	j	LTR	i	LTR		Ü	LTR	1
Volume	41		11 5	21 76	3	2 1	L Ì	209 (5 67	i
Lane Wid		12.0	1	2.0	†	12.0	1		12.0	į
RTOR Vol	l	0	1	10	l .	C) [0	I
Duration	1.00	Area 1		BD or Sim						
Phase Co	mbination	1 2	Signa 3	al Operat	lons	<u>-</u> -		7	8	
EB Left		P	-	l NB	Left	P	U	′	0	
Thru		P			Thru	P				
Right	t	P		į	Right	_				
Peds				Ì	Peds	-				
WB Left		P		SB	Left	P				
Thru		P		1	Thru	P				
Right	t	P		I	Right	P				
Peds				1	Peds					
NB Right				EB	Right					
SB Right				WB	Right					
Green		30.0				20.0				
Yellow		3.0				3.0				
All Red		2.0				2.0				
		Intorcoc	tion Da			Cycl	e Leng	gth: 6	0.0	secs
Appr/ I	Lane	Incersed Adj Sat	Rati	erformanc			71		·	·
	Froup	Flow Rate	Nacı	.03	Lane	Group	Appı	roach		
	Capacity	(s)	v/c	g/C	Delay	LOS	Delay	· TOC	_	
				9,0		103		/ LUS		
Eastbounc	i									
LTR	1408	2815	0.84	0.50	19.3	В	19.3	В		
Westbound	ł									
LTR	1462	2924	0.45	0.50	10.6	В	10.6	В		
Northboun			0.10	0.50	10.0		10.0	Б		
VOT CHROCH	ıu									
LTR	493	1479	0.01	0.33	13.4	В	13.4	В		
Southboun	ıd									
southboun										
	427	1282	0.72	0.33	28.1	С	28.1	С		

Pha	se Combinatior	n 1	2	3	4			5	6	7	8
EB	Left Thru Right Peds	P P P			ļ 	NB	Left Thru Right Peds	P P			
WB	Left Thru Right Peds	P P P			 	SB	Left Thru Right Peds	P P P			
NB	Right					EΒ	Right				
SB	Right					WB	Right				
Gree Yell All	low	30.0 3.0 2.0			ı			20.0 3.0 2.0			

Cycle Length: 60.0 secs

VOLUME ADJUSTMENT AND SATURATION FLOW WORKSHEET

	Ea:	stbou	nd	Westbound			N	orthbo	und	Southbound		
	l L	T	R	l L	T	R	(L	T	R	L	${f T}$	R
	ļ			_			_1			İ		
Volume, V	41	1017	3	11	521	76	3	2	1	209	0	67
PHF	0.90	0.90	0.90	0.90	0.90	0.90	10.9	0.90	0.90	10.90	0.90	0.89
Adj flow	46	1130	3	11	579	73	13	2	1	1232	0	75
No. Lanes) 0	2	0	1 0	2	0	ĺ	0 1	0	i 0	1	0
Lane group	Ī	LT		1	LT	R	İ	LT	R	1	LTI	₹ .
Adj flow		1179		i	653		Ì	6		i	307	
Prop LTs	1	0.03	39	1	0.00	02	ì	0.5	0.0	i	0.75	5.6
Prop RTs	1 0.	.003		i o	.112		i	0.167	-	1 0	.244	, 0

	Eastbound	Wes	tbound	Ne	orthbour	nd	adjustmen		
LG	LTR		-11	LTR	à tel	JOU.	Southbound		
So	1900		LTR 1900		1900			LTR	
Lanes 0	2 0	O	2 0	0	1.500	0	0	1900	
£W	1.000	0	1.000	Ü	1.000	_	0	1	0
fHV	0.954		0.958					1.000	
fG	1.000		1.000		1.000			1.000	
fP	1.000		1.000		1.000			1.000	
fBB	1.000			1.000			1.000		
fA	0.900			1.000			1.000		
fLU	0.952			0.900			0.900		
fRT	1.000		0.952 0.983		1.000			1.000	
£LT	0.906		0.954		0.978			0.967	
Sec.	0.500		0.554		0.885)		0.775	
fLpb	1.000		1.000		1.000	١		1.000	
fRpb	1.000		1.000		1.000			1.000	
s	2815		2924		1479			1282	
Sec.					±472			1202	
		CAPAC	ITY AND LO	id Mobi	क्रम्म २				

```
SUPPLEMENTAL PERMITTED LT WORKSHEET
                               for exclusive lefts
 Input
                                                        EΒ
                                                              WB
                                                                    MB
                                                                           SB
 Opposed by Single(S) or Multiple(M) lane approach
 Cycle length, C
                                                   sec
 Total actual green time for LT lane group, G (s)
 Effective permitted green time for LT lane group, q(s)
 Opposing effective green time, go (s)
Number of lanes in LT lane group, N
Number of lanes in opposing approach, No
Adjusted LT flow rate, VLT (veh/h)
Proportion of LT in LT lane group, PLT
Proportion of LT in opposing flow, PLTo
Adjusted opposing flow rate, Vo (veh/h)
Lost time for LT lane group, tL
Computation
LT volume per cycle, LTC=VLTC/3600
Opposing lane util. factor, fLUo
                                                        0.952 0.952 1.000 1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cvc)
gf=G[exp(- a * (LTC ** b))]-tl, qf<=q
Opposing platoon ratio, Rpo (refer Exhibit 16-11)
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
gq, (see Exhibit C16-4,5,6,7,8)
gu=g-gq if gq>=gf, or = g-gf if gq< gf
n=Max(gq-gf)/2,0)
PTHo=1-PLTo
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]
EL1 (refer to Exhibit C16-3)
EL2=Max((1-Ptho**n)/Plto, 1.0)
fmin=2(1+PL)/g or fmin=2(1+P1)/g
gdiff=max(gq-gf,0)
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin:max=1.00)
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)], (fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
For special case of single-lane approach opposed by multilane approach,
see text.
* If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto
  left-turn lane and redo calculations.
** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm.
For special case of multilane approach opposed by single-lane approach
or when qf>qq, see text.
                      SUPPLEMENTAL PERMITTED LT WORKSHEET
                                for shared lefts
Input
                                                        EB
                                                              WB
                                                                    NВ
                                                                          SB
Opposed by Single(S) or Multiple(M) lane approach
                                                                    S
Cycle length, C
                                           60.0
                                                  sec
Total actual green time for LT lane group, G (s)
                                                        30.0 30.0
                                                                    20.0
                                                                          20.0
Effective permitted green time for LT lane group, g(s) 30.0 30.0
                                                                    20.0 20.0
Opposing effective green time, go (s)
                                                        30.0 30.0
                                                                    20.0 20.0
Number of lanes in LT lane group, N
                                                        2
                                                              2
                                                                    1
                                                                          1
```

OCCbicg
OCCr
Number of cross-street receiving lanes, Nrec
Number of turning lanes, Nturn
ApbT
Proportion right-turns, PRT
Proportion right-turns using protected phase, PRTA
Right turn adjustment, fRpb

SUPPLEMENTAL UNIFORM DELAY WORKSHEET

EBLT WBLT NBLT SBLT

Cycle length, C 60.0 sec Adj. LT vol from Vol Adjustment Worksheet, v v/c ratio from Capacity Worksheet, X Protected phase effective green interval, q (s) Opposing queue effective green interval, gg Unopposed green interval, gu Red time r = (C - q - qq - qu)Arrival rate, qa=v/(3600(max[X,1.0])) Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Ss=s(qq+qu)/(qu*3600) XPerm XProt Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Ou Residual queue, Qr Uniform Delay, d1

Intersection Delay 17.9 sec/veh

0.0

Initial Dur. Uniform Delay Initial Final Initial Lane Appr/ Unmet Unmet Queue Unmet Queue Group Demand Demand Unadj. Adj. Lane Param. Demand Delay Delay Group Q veh t hrs. ds d1 sec u Q veh d3 sec d sec Eastbound 0.0 0.0 LTR 0.0 0.00 15.0 12.9 0.00 0.0 0.0 19.3 0.00.0 Westbound 0.0 0.0 LTR 0.0 0.00 15.0 9.7 0.00 0.0 0.0 10.6 0.0 0.0 Northbound 0.0 0.0 0.0 20.0 13.4 0.00 LTR 0.00 0.0 0.0 13.4 0.0 0.0 Southbound 0.0 0.0 LTR 0.0 0.00 20.0 17.5 0.00 0.0 0.0 28.1

DELAY/LOS WORKSHEET WITH INITIAL QUEUE

BACK OF QUEUE WORKSHEET

0.0

Intersection LOS B

Analyst: CFD

Inter.: US 50 and Meadowlark

Agency: Barr & Prevost

Area Type: CBD or Similar

Date: 4/15/2008

Jurisd: Fairfax, Ohio

Period: 7:30 AM-8:30 AM

Year : 2008

Project ID: Meadowlark AM: 1 lane+Dragon Way Open

E/W St: US 50

N/S St: Meadowlark/Wooster Pike

-,		ሮ ፖራእነን ፣ ፣	OPD THOS			vialk/w	OUSE	st bi	(e	
	Eastbour		stbound	RSECTION		-				
	L T				rthbou			ıthboı		l
į	т т	R L	T R	L 	T	R	L	Т	R	
No. Lanes	1 1	0 1	1 0	i <u>-</u> 1	1	;		1	0	¦
LGConfig	L TR] L	TR	j L	TR	i	L _	TR	•	i
Volume	11 285	59 91	765 11	128	14	202	21	16	35	ŀ
·	12.0 12.0	•	12.0	12.0				12.0	33	-
RTOR Vol		6	5	112.0	12.0	20	12.0	12.0	4	1
Duration	1.00	Area Type:	CBD or	Similar		· · · · · · · · · · · · · · · · · · ·			·	
51			gnal Ope	rations_						
Phase Combin		2 3	4		5	6	7	8	;	
EB Left	A		1	NB Left	A					
Thru	A			Thru	A					
Right	A		1	Right	. A					
Peds			ŀ	Peds	Х					
WB Left	A		i i	SB Left	A					
Thru	A		, i	Thru	A					
Right	A		i	Right						
Peds			!	_	- A					
			1	Peds						
_			•	EB Right						
SB Right			Įτ	WB Right						
Green	45.5				13.5					
Yellow	3.0				3.0					
All Red	2.0				2.0					
					Сус	le Len	gth:	69.0	s	ecs
n /	In	tersection								
Appr/ Lane			atios	Lane	Group	App.	roach			
Gane Grou	-	Rate								
Grp Capa	city (s) v/c	g/C	Delay	LOS	Dela	y Los			
Castbound										
L 249	377	0.0	5 0.66	4.2	A					
TR 104	B 158	9 0.3	0.66	5.5	A	5.4	A			
Jestbound										
591	896	0.1	7 0.66	4.6	A					
TR 106				13.3	В	12.4	В			
Vorthbound										
242	1236	6 0.13	3 0.20	00 1	C					
'R 288	1472				C D	36.1	т.			
	1112	_ 0.78	0,20	20.0	IJ	30.1	D			
outhbound										
167	855	0.14	0.20	23.3	С					
			7 0 00	00.4			_			
'R 302	1542	2 0.17	0.20	23.4	C	23.4	C			

					PHASE DAT	<u> </u>				
Pha	se Combinatio	on 1	2	3	4		5	6	7	8
EB	Left Thru Right Peds	A A A			NB 	Left Thru Right Peds	A A A X			
WB	Left Thru Right Peds	A A A			SB 	Left Thru Right Peds	A A A			
NB	Right				EB	Right				
SB	Right				l l l	Right				
Gree Yell All		45.5 3.0 2.0			ļ		13.5 3.0 2.0			

Cycle Length: 69.0 secs

VOIUME AU	justment	_						_		
	Eastbo	•	Westbou	•	No.	rthbo	und	Sou	thbou	nd
	L T	R	L T	R	L	${f T}$	R	L	T	R
Volume, V	11 285	59	765	11	28	14	202	21	1.6	35
PHF	0.90 0.9	0 0.90 j	.90 0.90		0.90	0.90		10.90		
Adj flow	112 317	59 [3	.01 850		31	16	202			34
No. Lanes	1 1 1		1 1	0 i	1		0	1 1	1	0
Lane group	D L T	R j	L TR	'ni	L _	TR		L	TR	U
Adj flow	12 376		.01 857	•	31	218		·-	52	
Prop LTs	1.000 0.	000 ji	.000 0.00			0 0.00		11.000		Λ
Prop RTs	0.157					.927			654	O
LG L So 1900 Lanes 1 fW 1.00 fHV 1.00 fG 1.00 fP 1.00 fBB 1.00 fA 0.90 fLU 1.00	1 0 0 1.000 0 0.960 0 1.000 0 1.000 0 0.992 0 0.900 0 1.000 0 0.976	1.000 1.000 1.000 1.000 1.000 1.000 0.900	TR 1900 1 0 1.000 0.953 1.000 1.000 0.992 0.900 1.000 0.999	1. 19 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	North 00 1 000 1 000 1 000 1 000 1 000 1	hbound TR 1900 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0	Sou L 1900 1.000 1.000 1.000 1.000 0.900 1.000	TR 1900 1 1.000 1.000 1.000 1.000 1.000 0.900 0.900	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fLT 0.22 Sec.	1 1.000	0.524	1.000	0.	723 1	L.000		0.500	1.000)
	0 1.000 1.000	1.000	1.000 1.000	1.0		L.000 L.000		1.000	1.000	
377	1589	896	1614	123	36 1	.472		855	1542	-

SUPPLEMENTAL PERMITTED LT WORKSHEET

for exclusive lefts				
Input				
	EB	WB	ИВ	SB
Opposed by Single(S) or Multiple(M) lane approach	M	M	M	M
Cycle length, C 69.0 sec				
Total actual green time for LT lane group, G (s)	45.5	45.5	13.5	13.5
Effective permitted green time for LT lane group, g(s)	45.5	45.5	13.5	13.5
Opposing effective green time, go (s)	45.5	45.5	13.5	13.5
Number of lanes in LT lane group, N	1	1	1	1
Number of lanes in opposing approach, No	1	1	1 .	1
Adjusted LT flow rate, VLT (veh/h)	12	101	31	23
Proportion of LT in LT lane group, PLT	1.000	1.000	1.000	
Proportion of LT in opposing flow, PLTo	0.00	0.00	0.00	0.00
Adjusted opposing flow rate, Vo (veh/h)	857	376	52	218
Lost time for LT lane group, tL	5.00	5.00	5.00	5.00
Computation				
LT volume per cycle, LTC=VLTC/3600	0.23	1.94	0.59	0.44
Opposing lane util. factor, fLUo	1.000	1.000	1.000	1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)		7.21	1.00	4.18
gf=G[exp(- a * (LTC ** b))]-tl, gf<=g	0.0	0.0	0.0	0.0
Opposing platoon ratio, Rpo (refer Exhibit 16-11)	1.00	1.00	1.00	1.00
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]	0.34	0.34	0.80	0.80
gq, (see Exhibit C16-4,5,6,7,8)	16.36	1.21	0.00	2.65
gu=g-gq if $gq>=gf$, or = $g-gf$ if $gq< gf$	29.14	44.29	13.50	10.85
n=Max(gq-gf)/2,0)	8.18	0.60	0.00	1.32
PTHo=1-PLTo	1.00	1.00	1.00	1.00
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]	1.00	1.00	1.00	1.00
EL1 (refer to Exhibit C16-3)	2.90	1.86	1.38	1.61
EL2=Max((1-Ptho**n)/Plto, 1.0)				
fmin=2(1+PL)/g or fmin=2(1+Pl)/g	0.09	0.09	0.30	0.30
gdiff=max(gq-gf,0)	0.00	0.00	0.00	0.00
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)	0.22	0.52	0.72	0.50
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-	-1)],(1	ĭmin<=j	m<=1.0	00}
or flt=[fm+0.91(N-1)]/N**				

For special case of single-lane approach opposed by multilane approach, see text.

SUPPLEMENTAL PERMITTED LT WORKSHEET

for shared lefts

Input

Left-turn adjustment, .fLT

EB WB NB SB

0.221 0.524 0.723 0.500

Opposed by Single(S) or Multiple(M) lane approach Cycle length, C $69.0\,$ sec Total actual green time for LT lane group, G (s) Effective permitted green time for LT lane group, g(s) Opposing effective green time, go (s) Number of lanes in LT lane group, N

^{*} If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.

^{**} For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

OCCbicg	0.020
OCCr	0.000
Number of cross-street receiving lanes, Nrec	1
Number of turning lanes, Nturn	1
ApbT	1.000
Proportion right-turns, PRT	0.927
Proportion right-turns using protected phase, PRTA	0.000
Right turn adjustment, fRpb	1.000

SUPPLEMENTAL UNIFORM DELAY WORKSHEET

EBLT WBLT NBLT SBLT

Cycle length, C 69.0 sec Adj. LT vol from Vol Adjustment Worksheet, v v/c ratio from Capacity Worksheet, X Protected phase effective green interval, g (s) Opposing queue effective green interval, qq Unopposed green interval, gu Red time r=(C-g-gq-gu)Arrival rate, qa=v/(3600(max[X,1.0]))Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Ss=s(gq+gu)/(gu*3600) XProt Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Qu

Residual queue, Qr Uniform Delay, dl

DELAY/LOS WORKSHEET WITH INITIAL QUEUE

Appr/	Initial Unmet		Uniform	Delay	Initial Queue	Final Unmet	Initial Queue	Lane Group
Lane Group	Demand Q veh			Adj. d1 sec		Demand	Delay	Delay
Eastbou	nd							- total - i - man
L TR	0.0 0.0 0.0	0.00	11.7 11.7	4.1 5.2		0.0	0.0 0.0 0.0	4.2 5.5
Westbou	nd							
L TR	0.0 0.0 0.0	0.00	11.7 11.7			0.0	0.0 0.0 0.0	4.6 13.3
Northbo	ınd							
L TR	0.0 0.0 0.0		27.8 27.8			0.0	0.0 0.0 0.0	23.1 38.0
Southbou	ınd							
L TR	0.0 0.0 0.0		27.8 27.8	22.9 23.1		0.0	0.0 0.0 0.0	23.3 23.4

Intersection Delay 14.8 sec/veh Intersection LOS B

BACK OF QUEUE WORKSHEET

Analyst: CFD Inter.: US 50 and Meadowlark Agency: Barr & Prevost Area Type: CBD or Similar

Date: 4/15/2008 Jurisd: Fairfax, Ohio

Period: 4:45 PM-5:45 PM Year : 2008 Project ID: Meadowlark PM: 1 lane Dragon Way is open

Project E/W St:	ID: Meado	owlark	PM:	1 lane	e Dra		ay is c 3 St: M		wlark/	Woost	er Pi	ke	
2, 11 00.												12.0	
							CTION						
	•	stboun -		•	stbou:			thbou			uthbo		ļ
	L	Т	R	L	T	R	L 	T	R	L 	Т	R	l
No. Lane	s 1	1	0	1	ī	0	0	1	1	1 1	1.	0	
LGConfig	L	TR		L	TR			$_{ m LT}$	R	L	TR		
Volume	87	686	38	[120	370	11	185	11	171	28	10	29	
Lane Wid	th 12.0	12.0		12.0	12.0		1	12.0	12.0	112.0	12.0		
RTOR Vol	I		0			0	1		17	1		0	I
Duration	1.00		Area '			or Sin			****				
Dhara Car				-		Operat	cions				,		
Phase Col	mbinatior		2	3	4	l NB	Left	5 A	6	7		8	
Thru		A A				I NE	Thru	A					
Right		A A				1	Right						
Peds		JM.				i	Peds	- 1					
WB Left		A				I SB	Left	A					
Thru		A				1 25	Thru	A					
Right		A				i	Right						
Peds	•					i	Peds						
NB Right	t					EB	Right	:					
SB Right						i WB	Right						
Green		39.8					_	10.2	2				
Yellow		3.0						3.0					*
All Red		2.0						2.0					
									cle Le	ngth:	60.0		secs
						ormano	e Summ						
	Lane Group	_	Sat Rate		tios		Lane	Group	o Ap	proac	h		
	Capacity		s)	v/c	g.	7c	Delay	LOS	Del	ay LC	S		
Eastbound	d				····				 				
L	561	845		0.17	7 0	.66	4.0	A					
TR	1075	162		0.75		. 66	9.7	A	9.1	P			
Westbound	d												
L	294	443		0.45	5 0	.66	6.0	A					
TR	1077	162		0.39		.66	4.8	A	5.1	P	L		
Northbour	nd												
LT	209	123	0	0.51	L 0	. 17	24.7	С	29.	1 C	:		
R	247	145	4	0.69		. 17	31.8	С					
Southbour	nd												

Intersection Delay = 11.5 (sec/veh) Intersection LOS = B

21.6 C

21.6 C 21.6 C

0.16 0.17

0.17 0.17

200

258

1177

1519

L

TR

Pha	se Combination	n 1	2	3	4		5	б	7	8
ЕВ	Left Thru Right Peds	A A A			NB 	Left Thru Right Peds	A A A			
WB	Left Thru Right Peds	A A A			SB 	Left Thru Right Peds	A A A			
NB	Right				EB	Right				
SB	Right				WB 	Right				
Gre Yel All		39.8 3.0 2.0			I		10.2 3.0 2.0			

Cycle Length: 60.0 secs

VOLUME ADJUSTMENT AND SATURATION FLOW WORKSHEET

	Ea:	stbou	nd] We	stbou	nd	No	rthbo	und	Soi	uthbo	und
	l L	${f T}$	R	[L	T	R	L	${}^{t}\!\Gamma$	R	L	${f r}$	R
				_			_1			1		
Volume, V	87	686	38	120	370	11	85	11	171]28	10	29
PHF]0.90	0.90	0.90	0.90	0.90	0.90]0.90	0.90	0.90	10.90	0.90	0.90
Adj flow	197	762	42]133	411	12	194	1.2	171	131	1.1	32
No. Lanes	1	1	0	1	1	0	0	1.	1	1	1	0
Lane group	L	TR		L	TR		1	$_{ m LT}$	R	L	TR	
Adj flow	197	804		133	423		Í	106	171	31	43	
Prop LTs	1.000	0.0	00	1.000	0.00	0.0	1	0.8	87	11.000	0.0	00
Prop RTs	[0.	. 052		0	.028		j o	.000	1.000	i o.	744	

Saturat	tion 1	Flow Ra	ate	(see Exh	ibit 1	6-7	to	dete	rmine tl	ne adji	ıstmen	t fact	ors)
	Eas	stbound	d E	₩e	stboun	d		No	rthbound	i	Sout	thboun	<u></u>
LG	L	TR		L	Τ̈́R				$\mathbf{L}\mathbf{T}$	R	L	TR	
So 1	1900	1900		1900	1900				1900	1900	1900	1900	
Lanes 1	1.	1	0	1	1	0		0	1	1	1	1	0
fW 1	1.000	1.000		1.000	1.000				1.000	1.000	1.000	1.000	
fHV 1	1.000	0.955		1.000	0.954				1.000	1.000	1.000	1.000	
fG 1	1.000	1.000		1.000	1.000				1.000	1.000	1.000	1.000	
fP 1	1.000	1.000		1.000	1.000				1.000	1.000	1.000	1.000	
fBB 0	0.988	1.000		1.000	1.000						1.000		
fA 0	0.900	0.900		0.900	.0.900				0.900	0.900	0.900	0.900	
fLU 1	1.000	1.000		1.000	1.000						1.000		
fRT		0.992			0.996					0.850		0.888	
fLT 0	0.500	1.000		0.259	1.000				0.719		0.689	1.000	
Sec.													
fLpb 1	1.000	1.000		1.000	1.000				1.000		1.000	1.000	
fRpb		1.000			1.000				1.000	1.000		1.000	
S 8	345	1620		443	1624				1230	1454	1177	1519	
Sec.													
				CAPAC	CITY A	ND I	205	WORK	SHEET				
Capacit	y Ana	lysis	and	Lane Gro	oup Ca	paci	ity						

SUPPLEMENTAL PERMITTED LT WORKSHEET

for exclusive lefts			
Input			
	EB	мв ив	SB
Opposed by Single(S) or Multiple(M) lane approach	М	M	M
Cycle length, C 60.0 sec			
Total actual green time for LT lane group, G (s)	39.8	39.8	10.2
Effective permitted green time for LT lane group, g(s)		39.8	10.2
Opposing effective green time, go (s)	39.8	39.8	10.2
Number of lanes in LT lane group, N	1	1	1
Number of lanes in opposing approach, No	1.	1	1
Adjusted LT flow rate, VLT (veh/h)	97	133	31
Proportion of LT in LT lane group, PLT		1.000	1.000
Proportion of LT in opposing flow, PLTo	0.00	0.00	0.89
Adjusted opposing flow rate, Vo (veh/h)	423	804	106
Lost time for LT lane group, tL	5.00	5.00	5.00
Computation			
LT volume per cycle, LTC=VLTC/3600	1.62		0.52
Opposing lane util. factor, fLUo		1.000 1.0	000 1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)	7.05	13.40	1.77
gf=G[exp(- a * (LTC ** b))]-t1, gf<=g	0.0	0.0	0.0
Opposing platoon ratio, Rpo (refer Exhibit 16-11)	1.00		1.00
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]	0.34		0.83
gq, (see Exhibit C16-4,5,6,7,8)	1.21	11.31	0.00
gu=g-gq if gq>=gf, or = g-gf if gq <gf< td=""><td></td><td>28.49</td><td>10.20</td></gf<>		28.49	10.20
n=Max(gq-gf)/2,0)	0.60	5.65	0.00
PTHO=1-PLTo	1.00	1.00	0.11
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]	1.00	1.00	1.00
EL1 (refer to Exhibit C16-3)	1.94	2.76	1.45
EL2=Max((1-Ptho**n)/Plto, 1.0)			1.00
fmin=2(1+PL)/g or fmin=2(1+Pl)/g	0.10	0.10	0.39
gdiff=max(gq-gf,0)	0.00	0.00	0.00
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)	0.50	0.26	0.69
	-1)],(1	fmin<=fm<=	1.00)
Left-turn adjustment, fLT	0.500	0.259	0.689

For special case of single-lane approach opposed by multilane approach, see text.

^{**} For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

SUPPLEMENTAL PERMITTED LT WORKSH	IEET			
for shared lefts	<u> </u>			
Input				
	EB	WB	NB	SB
Opposed by Single(S) or Multiple(M) lane approach			M	
Cycle length, C 60.0 sec				
Total actual green time for LT lane group, G (s)			10.2	
Effective permitted green time for LT lane group, q(s)			10.2	
Opposing effective green time, go (s)			10.2	
Number of lanes in LT lane group, N			1	

^{*} If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.

OCCbicg
OCCr
Number of cross-street receiving lanes, Nrec
Number of turning lanes, Nturn
ApbT
Proportion right-turns, PRT
Proportion right-turns using protected phase, PRTA
Right turn adjustment, fRpb

SUPPLEMENTAL UNIFORM DELAY WORKSHEET

EBLT WBLT NBLT SBLT

Cycle length, C 60.0 sec Adj. LT vol from Vol Adjustment Worksheet, v v/c ratio from Capacity Worksheet, X Protected phase effective green interval, g (s) Opposing queue effective green interval, qq Unopposed green interval, qu Red time r=(C-q-qq-qu)Arrival rate, qa=v/(3600(max[X,1.0])) Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Ss=s(gq+gu)/(gu*3600) XPerm XProt Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Qu

Residual queue, Qr Uniform Delay, d1

DELAY/LOS WORKSHEET WITH INITIAL QUEUE

Appr/		Dur. Unmet	Uniform	Delay	Initial Queue	Final Unmet		Lane Group
Lane		Demand	Unadj. ds	_	Param. u	Demand	Delay d3 sec	Delay
Eastbou	ınd			· · · · · · · · · · · · · · · · · · ·				
L TR	0.0 0.0 0.0	0.00	10.1				0.0 0.0 0.0	4.0 9.7
Westbou	nd							
L TR	0.0 0.0 0.0		10.1		0.00 0.00		0.0 0.0 0.0	6.0 4.8
Northbo	und							
	0.0						0.0	
LT R	0.0	0.00	24.9 24.9	22.6 23.4	0.00	0.0	0.0	24.7 31.8
Southbo	und							
L TR	0.0 0.0 0.0	0.00	24.9 24.9	21.2	0.00	0.0	0.0 0.0 0.0	21.6 21.6

Intersection Delay 11.5 sec/veh Intersection LOS B

BACK OF QUEUE WORKSHEET_____

Inter.: Wooster and Watterson Analyst: CFD Agency: Barr & Prevost

Area Type: CBD or Similar

52.3 D

Jurisd: Fairfax, Ohio

Period: 7:30 AM-8:30 AM Year : 2008

Date: 4/15/2008

R

Project ID: Wooster and Watterson:1 Lane+Close Midas+Close 4 st on Nside E/W St: US 50 N/S St: Watterson

E/W St: US	50			N/S	st: W	atters	son			
		S	IGNALIZED	INTERSE	CTION	SUMMAF	RY			
	l Eas	tbound	Westb			thbour		Sout	hboun	d
	L	T R	L I		L		R I	L		R
No. Lanes LGConfig	1 L	1 0 T	0	1 0 TR	0	0	0	1 L		1 R
Volume	30	417	J 87		1		-	113	6	
Lane Width RTOR Vol	12.0	12.0] 12 	10]		1	L2.0	1. 7	2.0
Duration	1.00	Area	Type: CE	D or Sim			·····			7 == 171A.42
Phase Combi	nation	1 2	3	4		5	6	7	8	
EB Left		A	_	NB	Left					
Thru		A		į	Thru					
Right				1	Right					
Peds				I	Peds					
WB Left				SB	Left	A				
Thru		A		ļ.	Thru	_				
Right		A		ļ.	Right	A				
Peds				 EB	Peds Right					
NB Right SB Right] WB	Right					
Green		71.6		,	1129110	9.4				
Yellow		3.0				3.0				
All Red		2.0			•	2.0				
						Cycl	Le Leng	gth: 9	91.0	secs
		Inters	ection Pe	rformanc	e Summ	ary				
Appr/ Lan	ıe	Adj Sat	Rati	.05	Lane	Group	App	roach		
Lane Gro	_	Flow Rat								
Grp Cap	acity	(s)	v/c	g/C	Delay	LOS	Delay	y LOS		
Eastbound		420	0.10	0.79	2.4	A				
L 34	282	432 1629	0.10	0.79	3.1	A	3.0	A		
	.02	1029	0.30	0.75	J.1	11	J. 0	*.r		
Westbound										
TR 12	271	1615	0.85	0.79	12.1	В	12.1	В		
Northbound										
Southbound										
L 16	8	1624	0.75	0.10	58.5	E	50.0			

0.43 0.10 40.2 D

Intersection Delay = 13.9 (sec/veh) Intersection LOS = B

1454

Phase Combinatio	n 1.	2	3	4	5	6	7	8
EB Left Thru Right Peds	A A			NB Left Thru Right Peds				
WB Left Thru Right Peds	A A			SB Left Thru Right Peds	A A			
NB Right				EB Right				
SB Right				WB Right 				
Green Yellow All Red	71.6 3.0 2.0			I	9.4 3.0 2.0			

Cycle Length: 91.0 secs

VOLUME ADJUSTMENT AND SATURATION FLOW WORKSHEET

		03301	****													
Volume Adjı	ıstmeni	t														
	Ea:	stbour	nd	- 1	West!	bour	nd		Nor	thbo	ınd	1	Sou	thbo	und	1
	L	T	R	:	L '	r	R	ļ	Ŀ	T	R	I		T	R	l
	1			1_				1								
Volume, V	[30	417			8	77	104					111	.3		65]
PHF	10.90	0.90		i	0	.90	0.90	-				10.	90		0.90	1
Adj flow	[33	463		1	9	74	104	-				12	26		64	
No. Lanes	1	1	0	1	0	1	0		0	0	0	1	1	0	1	1
Lane group	L	\mathbf{T}				TR						I	1		R	
Adj flow	33	463		ļ	1.	078						12	6		64	
Prop LTs	1.00	0.00	0.0	1		0.00	0.0									1
Prop RTs	0	.000		1	0.0	96		-1				1			1.000	1

Satura	ation .	Flow	Rate	(see	Exhibit	16-7	to	det	ermine	the	adjustmen	t i	factors)
	Ea	stbou	nd		Westbo	und		N	orthbo	ınd	Sou	thi	ound
LG	L	Т			TR						${f L}$		R
So	1900	1900			190	0					1900		1900
Lanes	1	1	0	0	1	0		0	0	0	1	0	1
fW	1.000	1.00	0		1.0	00					1.000		1.000
fHV	1.000	0.95	2		0.9	57					1.000		1.000
fG	1.000	1.00	0		1.0	00					1.000		1.000
fP	1.000	1.00	0		1.0	00					1.000		1.000
fBB	1.000	1.00	0		1.0	00					1.000		1.000
£A.	0.900	0.90	0		0.9	00					0.900		0.900
fLU	1.000	1.00	0		1.0	00					1.000		1.000
fRT		1.00	0		0.9	87							0.850
\mathtt{fLT}	0.253	1.00	0		1.0	00					0.950		
Sec.													
fLpb	1.000	1.00	0		1.0	00					1.000		
fRpb		1.00	0		1.0	00							1.000
S	432	1629			161	5					1624		1454
Sec.													
					CAPACITY			WOR	KSHEET _.				

Capacity Analysis and Lane Group Capacity

Intersection delay = 13.9 (sec/veh) Intersection LOS = B

SUPPLEMENTAL PERMITTED LT WORKSHEET

for exclusive lefts Input EΒ WB NB SBOpposed by Single(S) or Multiple(M) lane approach Cycle length, C 91.0 Total actual green time for LT lane group, G (s) 71.6 Effective permitted green time for LT lane group, g(s) 71.6 Opposing effective green time, go (s) 71.6 Number of lanes in LT lane group, N Number of lanes in opposing approach, No 1 Adjusted LT flow rate, VLT (veh/h) 33 Proportion of LT in LT lane group, PLT 1.000 Proportion of LT in opposing flow, PLTo 0.00 Adjusted opposing flow rate, Vo (veh/h) 1078 Lost time for LT lane group, tL 5.00 Computation LT volume per cycle, LTC=VLTC/3600 0.83 Opposing lane util. factor, fLUo 1.000 1.000 Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc) 27.25 qf=G[exp(-a * (LTC ** b))]-tl, qf<=q0.0 Opposing platoon ratio, Rpo (refer Exhibit 16-11) 1.00 0.21 Opposing Queue Ratio, gro=Max[1-Rpo(go/C),0] gq, (see Exhibit C16-4,5,6,7,8) 6.90 gu=g-gq if gq>=gf, or = g-qf if qq<qf64.70 n=Max(qq-qf)/2,0)3.45 PTHo=1-PLTo 1.00 PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)] 1.00 EL1 (refer to Exhibit C16-3) 3.57 EL2=Max((1-Ptho**n)/Plto, 1.0) fmin=2(1+PL)/g or fmin=2(1+PL)/g0.06 0.00 gdiff=max(gq-gf,0) fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)0.25 flt=fm=[qf/q]+[qu/q]/[1+PL(EL1-1)]+[qdiff/q]/[1+PL(EL2-1)], (fmin<=fm<=1.00)or flt=[fm+0.91(N-1)]/N**Left-turn adjustment, fLT 0.253

For special case of single-lane approach opposed by multilane approach, see text.

- * If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.
- ** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>qq, see text.

SUPPLEMENTAL PERMITTED LT WORKSHEET

for shared lefts

Input

EB WB NB SB

Opposed by Single(S) or Multiple(M) lane approach
Cycle length, C 91.0 sec
Total actual green time for LT lane group, G (s)
Effective permitted green time for LT lane group, g(s)
Opposing effective green time, go (s)
Number of lanes in LT lane group, N

OCCbicg
OCCr
Number of cross-street receiving lanes, Nrec
Number of turning lanes, Nturn
ApbT
Proportion right-turns, PRT
Proportion right-turns using protected phase, PRTA
Right turn adjustment, fRpb

SUPPLEMENTAL UNIFORM DELAY WORKSHEET

EBLT WBLT NBLT SBLT

91.0 Cycle length, C 500 Adj. LT vol from Vol Adjustment Worksheet, v v/c ratio from Capacity Worksheet, X Protected phase effective green interval, g (s) Opposing queue effective green interval, gq Unopposed green interval, gu Red time r=(C-q-qq-qu)Arrival rate, qa=v/(3600(max[X,1.0]))Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Ss=s(gq+gu)/(gu*3600) XPerm XProt Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Qu Residual queue, Qr

Intersection Delay 13.9 sec/veh

Uniform Delay, d1

DELAY/LOS WORKSHEET WITH INITIAL QUEUE Uniform Delay Initial Final Initial Lane Initial Dur. Unmet Oueue Unmet Queue Group Appr/ Unmet Demand Demand Unadj. Adj. Param. Demand Delay Delay Lane dl sec u Q veh d3 sec d sec Group Q veh t hrs. ds Eastbound 0.0 2.4 L 0.0 0.00 9.7 2.2 0.00 0.0 0.00 0.0 3.1 0.0 0.00 9.7 2.9 0.0 0.0 0.0 Westbound 0.0 0.0 0.00 9.7 6.2 0.00 0.0 0.0 12.1 TR 0.0 0.0 0.0 Northbound 0.0 0.0 0.0 0.0 0.0 0.0 Southbound 0.0 40.8 39.7 0.00 0.0 58.5 0.0 0.00 0.0 0.0 40.2 40.8 38.3 0.00 0.0 0.0 R 0.0 0.00

BACK OF QUEUE WORKSHEET

Intersection LOS

Analyst: CFD Inter.: Wooster and Watterson Agency: Barr & Prevost Area Type: CBD or Similar

Date: 4/15/2008 Jurisd: Fairfax, Ohio

Period: 4:45 PM-5:45 PM Year : 2008

Project ID: Wooster and Watterson: 1 Lane+Close Midas+Close 4 st on Nside

E/W St: US 50 N/S St: Watterson

 SIGNALIZED	INTERSECTION	SUMMARY

mount.				CINATIL										
	Eas	stbour	ıd	We	stbou	nd	l	Nor	thbo	und	Sou	thbo	und	1
	L	T	R	L	T	R	- 1	L	${f T}$	R	L	T	R	1
	1			1			- 1				1			i
No. Lanes	1 1	1	0	1 0	1	0	_ _	0	0	0	1 1	0	1	_
LGConfig	L	$^{\prime}\mathrm{T}$		Ī	TR		Ì				L		R	
Volume	153	1017		1	521	96	1				1239		75	
Lane Width	112.0	12.0		1	12.0		i				112.0		12.0	
RTOR Vol	1			1		0	Ţ				(7	

Dur	ation 1.00) .	Area	Type:	CBD or	Sim	ilar					
					gnal Op							
Pha	se Combinatio	n 1	2	3	4			5	6	7	8	
EΒ	Left	A			1	NB	Left					
	Thru	\mathbf{A}			ĺ		Thru					
	Right				1		Right					
	Peds				1		Peds					
WB	Left				į	SB	Left	A				
	Thru	A			į		Thru					
	Right	A			1		Right	A				
	Peds				1		Peds					
NB	Right				i	EВ	Right					
SB	Right				į	WB	Right					
Gre	en	104.5			,		_	26.5				
Yel	low	3.0						3.0				
All	Red	2.0						2.0				

Cycle Length: 141.0 secs

		Intersec	tion P	erforman	ice Summa	ary				
Appr/ Lane	Lane Group	Adj Sat Flow Rate	Rat	ios	Lane (Froup	Appro	oach		
Grp	Capacity	(s)	v/c	g/C	Delay	LOS	Delay	LOS		
Eastbo	und					•		<u>.</u>	 	
L	466	629	0.13	0.74	5.3	A				
T	1207	1629	0.94	0.74	32.6	С	31.2	С		
Westbo	und									
TR	1131	1526	0.61	0.74	9.5	A	9.5	A		

Northbound

Southl	oound							
L	305	1624	0.87	0.19	84.3	F		
							76.6 E	
R	273	1454	0.28	0.19	49.6	D		
	Interse	ction Delay	r = 31.5	(sec/v	eh) Ir	iters	ection LOS	= C

Pha	se Combination	1	2	3	4	ļ			5	6	7	8
EB	Left Thru Right Peds	A A				 	NB	Left Thru Right Peds				
WB	Left Thru Right Peds	A A					SB	Left Thru Right Peds	A A			
NB	Right					ļ į	EB	Right				
SB	Right					; 	WВ	Right				
Gre Yel All	low	104.5 3.0 2.0				•			26.5 3.0 2.0			

Cycle Length: 141.0 secs

VOLUME ADJUSTMENT AND SATURATION FLOW WORKSHEET

						_ ~			т по.		(16.91)		
Volume Adjı	ıstmen	t									_		
	Eas	stbour	ıd	V	Vestbou:	nd	1	Nor	thbou	ınd	Sou	thbo	und
	L	T	R	L	T	R	L	ı	T	R	L	\mathbf{T}	R
	1			_1			1				I		ĺ
Volume, V	[53	1017		1	521	96	1				1239		75
PHF	10.90	0.90			0.90	0.90	1				10.90		0.90
Adj flow	59	1130			579	107	1				1266		76
No. Lanes	1	1	0		0 1	0		0	0	0	1	0	1
Lane group	L	T		1	TR						[Ł		R
Adj flow	59	1130		i	686		1				1266		76
Prop LTs	1.00	0.00	0	ļ	0.0	00					1		1
Prop RTs	1 0	.000		l	0.156						1		1.000

Satur				(see			to				adjustmen				
		stboun	a		Westbo			ŊC	orthbou	ind		th	bound		
LG	Ŀ	T			TR						L			R	
So	1900	1900			1.90	0					1900			1900	
Lanes	1	1	0	0	1	0		0	0	0	1	0		1	
fW	1.000	1.000			1.0	00					1.000			1.000	
fHV	1.000	0.952			0.9	60					1.000			1.000	
fG	1.000	1.000			0.9	50					1.000			1.000	
fР	1.000	1.000			1.0	00					1.000			1.000	
fBB	1.000	1.000			1.0	00					1.000			1.000	
fΑ	0.900	0.900			0.9	00					0.900			0.900	
fLU	1.000	1.000			1.0	00					1.000			1.000	
fRT		1.000			0.9	79								0.850	
${ t fLT}$	0.368	1.000			1.00	00					0.950				
Sec.															
fLpb	1.000	1.000			1.00	00					1.000				
fRpb		1.000			1.0	00								1.000	
S	629	1629			152	6					1624			1454	
Sec.															
					CAPACITY	AND I	Los	WORK	SHEET_						
Capac:	ity An	alysis	anc	l Lane	e Group	Capaci	Lty		_						_
					_	_	_								

Intersection delay = 31.5 (sec/veh) Intersection LOS = C

```
SUPPLEMENTAL PERMITTED LT WORKSHEET
                               for exclusive lefts
Input
                                                        EΒ
                                                              WB
                                                                    NB
                                                                           SB
Opposed by Single(S) or Multiple(M) lane approach
Cycle length, C
                                           141.0
                                                   sec
Total actual green time for LT lane group, G (s)
                                                        104.5
Effective permitted green time for LT lane group, g(s) 104.5
Opposing effective green time, go (s)
                                                        104.5
Number of lanes in LT lane group, N
Number of lanes in opposing approach, No
                                                        7
Adjusted LT flow rate, VLT (veh/h)
                                                        59
Proportion of LT in LT lane group, PLT
                                                        1.000
Proportion of LT in opposing flow, PLTo
                                                        0.00
Adjusted opposing flow rate, Vo (veh/h)
                                                        686
Lost time for LT lane group, tL
                                                        5.00
Computation
LT volume per cycle, LTC=VLTC/3600
                                                        2.31
Opposing lane util. factor, fLUo
                                                        1.000 1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cvc)
                                                        26.87
gf=G[exp(- a * (LTC ** b))]-tl, gf<=g
                                                        0.0
Opposing platoon ratio, Rpo (refer Exhibit 16-11)
                                                        1.00
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
                                                        0.26
gq, (see Exhibit C16-4,5,6,7,8)
                                                        9.47
gu=g-gq if gq>=gf, or = g-gf if gq<gf
                                                        95.03
n=Max(qq-qf)/2,0)
                                                        4.73
PTHo=1-PLTo
                                                        1.00
PL^*=PLT[1+(N-1)q/(qf+qu/EL1+4.24)]
                                                        1.00
EL1 (refer to Exhibit C16-3)
                                                        2.47
EL2=Max((1-Ptho**n)/Plto, 1.0)
fmin=2(1+PL)/g or fmin=2(1+Pl)/g
                                                        0.04
gdiff=max(qq-qf,0)
                                                        0.00
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)], (fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
                                                        0.368
```

For special case of single-lane approach opposed by multilane approach, see text.

- * If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.
- ** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

____SUPPLEMENTAL PERMITTED LT WORKSHEET_ for shared lefts

Input

EB WB NB SB

Opposed by Single(S) or Multiple(M) lane approach
Cycle length, C 141.0 sec
Total actual green time for LT lane group, G (s)
Effective permitted green time for LT lane group, g(s)
Opposing effective green time, go (s)
Number of lanes in LT lane group, N

	Eastbound	Westbound	Northbound	Southbound
LaneGroup	L T	TR		L R
Init Queue	10.0 0.0	0.0	1	0.0
Flow Rate	59 1130	686		266 76
50	1900 1900	1900	1	1900 1900
No.Lanes	1 1 0	0 1 0	10 0 0	1 0 1
SL	629 1629	1526		1624 1454
LnCapacity	466 1207	1131	1	305 273
Flow Ratio		0.4	1	0.2
v/c Ratio	0.13 0.94	0.61		[0.87 0.28]
Grn Ratio	0.74 0.74	0.74	1	0.19 0.19
I Factor	1.000	1.000	1	1.000
AT or PVG	3 3] 3	1	3
Pltn Ratio	1.00 1.00	1.00	1	1.00
PF2	11.00 1.00	1.00		1.00 1.00
Q1	0.7 37.4	12.6	1	10.1 2.6
kB	0.6 1.0	1.0		0.4
Q2	10.1 11.4	1.5		[2.7 0.2]
Q Average	10.7 48.9	14.1		12.8 2.7
Q Spacing	125.0 25.0	25.0		25.0 25.0
Q Storage	10 0	1 0	1	0 [
Q S Ratio				1
70th Percen	tile Output:			
fB%	1.2 1.1	1.2		1.2 1.2
BOQ	[0.9 55.2	16.5		15.0 3.2
QSRatio	1			- I
85th Percen	tile Output:			
fB%	1.6 1.4	1.5		1.5 1.6
BOQ	11.2 66.4	21.0		19.1 4.3
QSRatio]			1
90th Percen	tile Output:			
fB%	11.8 1.4	1.6		1.6 1.7
BOQ	11.3 70.1	22.6	1	[20.6 4.7]
QSRatio	1			I
	tile Output:			
fB%	12.1 1.5	1.8	1	1.8 2.0
BOQ	11.5 75.2	25.1		22.9 5.5
QSRatio	1	1		1
98th Percen	tile Output:			
fB%	12.6 1.7	2.0		2.1 2.5
BOQ	2.0 84.2	28.8		26.5 6.8
QSRatio		1	}	1
			Halle Lamer	<u> </u>

ERROR MESSAGES

No errors to report.

OCCbicg
OCCr
Number of cross-street receiving lanes, Nrec
Number of turning lanes, Nturn
ApbT
Proportion right-turns, PRT
Proportion right-turns using protected phase, PRTA
Right turn adjustment, fRpb

SUPPLEMENTAL UNIFORM DELAY WORKSHEET

EBLT WBLT NBLT SBLT

Cycle length, C 141.0 sec Adj. LT vol from Vol Adjustment Worksheet, v v/c ratio from Capacity Worksheet, X Protected phase effective green interval, g (s) Opposing queue effective green interval, gq Unopposed green interval, qu Red time r = (C - q - qq - qu)Arrival rate, qa=v/(3600(max[X,1.0])) Protected ph. departure rate, Sp=s/3600 Permitted ph. departure rate, Ss=s(gq+gu)/(gu*3600) XPerm XProt Case Queue at beginning of green arrow, Qa Queue at beginning of unsaturated green, Qu Residual queue, Qr

Uniform Delay, dl

DELAY/LOS WORKSHEET WITH INITIAL QUEUE_____

Appr/ Lane Group	Initial Unmet Demand Q veh	Unmet	Uniform Unadj. ds	Delay Adj. dl sec	Initial Queue Param. u	Unmet	Initial Queue Delay d3 sec	Lane Group Delay d sec
Eastbou	nd							
L	0.0	0.00	18.3	5.2	0.00	0.0	0.0	5.3
T	0.0	0.00	18.3	15.4	0.00	0.0	0.0	32.6
	0.0						0.0	
Westbou	nd							
	0.0						0.0	
TR	0.0	0.00	18.3	8.6	0.00	0.0	0.0	9.5
	0.0						0.0	
Northbo	und							
	0.0						0.0	
	0.0						0.0	
	0.0						0.0	
Southbou	ınd							
L	0.0	0.00	57.3	55.6	0.00	0.0	0.0	84.3
	0.0						0.0	
R	0.0	0.00	57.3	49.1	0.00	00	0.0	49.6

Intersection Delay 31.5 sec/veh Intersection LOS C

BACK OF QUEUE WORKSHEET

		Adj	Adj Sat	Flow	Green	Lane G	
Appr/ Mvmt	Lane Group	Flow Rate (v)	Flow Rate (s)	Ratio (v/s)	Ratio (g/C)	Capacity (c)	v/c Ratio
HVIIIC	Group	(0 /	(3)	(0 / 5 /	19707	(0)	114620
Eastbound	,						
Prot							
Perm	+	E 0	C20	0.09	0.74	466	0.13
Left Prot	L	59	629	0.03	0.74	400	0.13
Perm							
Thru	Т	1130	1629	# 0.69	0.74	1207	0.94
Right	_						
Westbound							
Prot							
Perm							
Left							
Prot							
Perm	mp	COC	7526	0.45	0.74	ופוו	0 61
Thru Right	TR	686	1526	0.45	0.74	1131	0.61
Northboun	d						
Prot	u.						
Perm							
Left							
Prot							
Perm							
Thru							
Right	•						
Southbound	a						
Prot Perm							
Left	L	266	1624	# 0.16	0.19	305	0.87
Prot			100.				
Perm							
Thru							•
Right	R	76	1454	0.05	0.19	273	0.28
O				V.		(v/s) =	: 0.86
		s for critic er cycle, I			- Sum	(V/S) -	. 0.00
		e to capacit			= (Yc)(C)/(C-T ₁) =	: 0.92
CIICICAI .	LIOW LUL	c to tupati	y rucio,	110	(10)(0	,, (0 1)	0.52
Control De	elay and	LOS Determi	nation				
				mental	Res La	ne Group	Approach
Lane		Del Adj	Grp Facto	r Del	Del		
Grp v/c	g/C	dl Fact	Cap k	d2	d3 D	elay Los	Delay LOS
Eastbound L 0.13		5.2 1.000	466 0.11	0.1	0.0 5.	а А	•
L 0.13 T 0.94		15.4 1.000		17.1	0.0 3.		31.2 C
1 0.54	0.71	13.4 1.000	1207 0.45	4,,-1	0.0 02		31.2
Westbound							
TR 0.61	0.74	8.6 1.000	1131 0.19	0.9	0.0 9.	5 A	9.5 A
37 1 1 1	.1						
Northbound	ı .						
Southbound	i						
L 0.87	0.19	55.6 1.000	305 0.40	28.7	0.0 84	.3 F	
							76.6 E

Phone:

Fax:

E-Mail:

OPERATIONAL ANALYSIS_____

Analyst:

CFD

Agency/Co.:

Barr & Prevost

Agency/Co.:
Date Performed:
Analysis Time Period:

4/15/2008
4:45 PM-5:45 PM
Wooster and Watt

Intersection:

Wooster and Watterson

Area Type:

CBD or Similar

Jurisdiction: Fairfax, Ohio Analysis Year: 2008

Project ID: Wooster and Watterson: 1 Lane+Close Midas+Close 4 st on Nside

E/W St: US 50

N/S St: Watterson

VOLUME DATA

	Eastbound			We:	stbou	nd	Nor	thbo	und	Sou	thbo	ound
	L	T	R	L	T	R	L	T	R	l P	T	R
77 - 7	!	1017		!	F 0 1	0.6	!			_!		
Volume	[53	1017		ļ	521	96	ļ			239		75
% Heavy Ve	-	5			5	0	ļ			10		0
PHF	[0.90	0.90		1	0.90	0.90				[0.90		0.90
PK 15 Vol	15	283		I	145	27	I			166		21
Hi Ln Vol	1			1			1			İ		
용 Grade	i	0		I	10		1			i	0	
Ideal Sat	11900	_ 1900		' !	1900		1			11900	•	1900
ParkExist	1 4500	1300) 	1700) !			1 1 2 0 0		1500
	1			ł r			}			1		
NumPark	"	_			_		l	_	_	ļ _	_	
No. Lanes	1 1	1	0	1 0	1	0) 0	0	0	1	0	1
LGConfig	L	T		l	TR		1			L		R
Lane Width	12.0	12.0		1	12.0		İ			12.0		12.0
RTOR Vol						0	1			ł		7
Adj Flow	159	1130			686					1266		76
%InSharedL	•			I			I			i		, =
Prop LTs	•	0 0.00	ın i	! 	0.00	าก	! 			i		
-				1 0		<i>.</i>	l t			1		1 000
Prop RTs	•	.000		•	.156							1.000
Peds Bike				3	·		0			[0		
Buses	10	0			0					0		0
%InProtPha	se											
Duration	1 00		A ==== 0	n	CDD	- Ci	1					

Duration 1.00 Area Type: CBD or Similar

OPERATING PARAMETERS

	Ea	stbound	l W	estbound	1 1	Northbound	Southbound		
	L	T R	l L	T R	L	T R	L :	r R	
	1		t	•	!		1		
Init Unmet	0.0	0.0		0.0	ļ		10.0	0.0	
Arriv. Type	e 3	3	1	3	I		13	3	
Unit Ext.]3.0	3.0		3.0	1		13.0	3.0	
I Factor	J	1.000		1.000	ŀ		1 1.	.000	
Lost Time	12.0	2.0	1	2.0	1		2.0	2.0	
Ext of g	12.0	2.0		2.0	I		2.0	2.0	
Ped Min q	1]	3.2	1	3.2	1 3.	. 2	

	Disposit	Mezchoniia	Northbound	Southbound
LaneGroup	L T	TR	1	IL R
Init Queue	10.0 0.0	0.0	1	10.0 0.0
Flow Rate	33 463	1078	1	1126 64
So	1900 1900	1900		1900 1900
No.Lanes	1 1 0	0 1 0	0 0	11 0 1
SL	432 1629	1615		1624 1454
LnCapacity	· · ·	1271	1	168 150
Flow Ratio	J0.1 0.3	0.7	!	10.1 0.0
v/c Ratio	[0.10 0.36	0.85		0.43
Grn Ratio	0.79 0.79	(0.79		0.10 0.10
I Factor	1.000	1.000	Ì	1.000
AT or PVG	3 3	J 3	1	3
Pltn Ratio	11.00 1.00	1.00	İ	11.00 1.00
PF2	1.00 1.00	1.00	j	1.00
Q1	10.2 3.5	17.5	1	3.1 1.5
kB	10.4 0.8	0.8	i i	10.2 0.2
Q2	0.0 0.5	4.3		10.7 0.2
Q Average	10.2 3.9	21.8	I	13.8 1.7
	25.0 25.0	25.0	1	25.0 25.0
-	10 0	0	i	10 0 1
Q S Ratio	1	İ		
	tile Output:	•	1	,
	11.2 1.2	1.2	(1.2 1.2
	10.3 4.7	25.2	, 	14.5 2.0
QSRatio	ĺ		, [1 2.0
85th Percent	tile Output:		1	1
	11.6 1.6	1.4	I	11.6 1.6
BOQ	0.4 6.2	31.4	1	15.9 2.7
QSRatio	l	,		13.5
	tile Output:		1	1
	11.8 1.7	1.5	l	(1.7 1.8)
	0.4 6.8	33.4		16.6 3.0
QSRatio	i i]	10.0
	tile Output:		!	r
	2.1 2.0	1.7	Ī	12.0 2.0
	0.5 7.8 i	36.5	! }	17.5 3.4
QSRatio	· · · · · · · · · · · · · · · · · · ·		İ	3.4
	tile Output:		•	, I
	[2.7 2.4]	1.9	•	[2.4 2.6]
	0.6 9.6	41.1	! 	19.3 4.3
QSRatio	·		1	10.0
<u> </u>		I	1	1

ERROR MESSAGES_____

No errors to report.

```
Number of lanes in opposing approach, No
 Adjusted LT flow rate, VLT (veh/h)
 Proportion of LT in LT lane group, PLT
                                                         0.000 0.000
 Proportion of LT in opposing flow, PLTo
 Adjusted opposing flow rate, Vo (veh/h)
 Lost time for LT lane group, tL
 Computation
 LT volume per cycle, LTC=VLTC/3600
 Opposing lane util. factor, fLUo
                                                         1,000 1,000
 Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
 gf=G[exp(- a * (LTC ** b))]-tl, gf<=g
 Opposing platoon ratio, Rpo (refer Exhibit 16-11)
 Opposing Queue Ratio, gro=Max[1-Rpo(go/C),0]
 gq, (see Exhibit C16-4,5,6,7,8)
 gu=g-gq if gq>=gf, or = g-gf if qq< gf
n=Max(qq-qf)/2,0)
 PTHo=1-PLTo
FL*=PLT[1+(N-1)q/(qf+qu/EL1+4.24)]
EL1 (refer to Exhibit C16-3)
EL2=Max((1-Ptho**n)/Plto, 1.0)
fmin=2(1+PL)/g or
                    fmin=2(1+P1)/a
gdiff=max(gq-gf,0)
fm=[qf/q]+[qu/q]/[1+PL(EL1-1)], (min=fmin;max=1.00)
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)], (fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
For special case of single-lane approach opposed by multilane approach,
see text.
* If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto
  left-turn lane and redo calculations.
** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm.
For special case of multilane approach opposed by single-lane approach
or when gf>gq, see text.
               SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET
Permitted Left Turns
                                                        EB
                                                               WB
                                                                    NB
                                                                           SB
Effective pedestrian green time, gp (s)
Conflicting pedestrian volume, Vped (p/h)
Pedestrian flow rate, Vpedg (p/h)
OCCpedg
Opposing queue clearing green, gq (s)
Eff. ped. green consumed by opp. veh. queue, gq/gp
OCCpedu
Opposing flow rate, Vo (veh/h)
occr
Number of cross-street receiving lanes, Nrec
Number of turning lanes, Nturn
ApbT
Proportion of left turns, PLT
Proportion of left turns using protected phase, PLTA
Left-turn adjustment, fLpb
Permitted Right Turns
Effective pedestrian green time, gp (s)
Conflicting pedestrian volume, Vped (p/h)
Conflicting bicycle volume, Vbic (bicycles/h)
Vpedq
OCCpedg
Effective green, g (s)
Vbicg
```

		Adj	Adj Sat	Flow	Green	Lane G	roup
Appr/	Lane	Flow Rate			Ratio	Capacity	
Mvmt	Group	(v)	(s)	(v/s)	(g/C)	(c)	Ratio
Eastbound							******
Prot							
Perm							
Left	L	33	432	0.08	0.79	340	0.10
Prot					3.73	310	0.10
Perm							
Thru	T	463	1629	0.28	0.79	1282	0.36
Right							
Westbound							
Prot							
Perm							
Left							
Prot							
Perm							
Thru	TR	1078	1615	# 0.67	0.79	1271	0.85
Right							
Northboun	d						
Prot							
Perm							
Left							
Prot							
Perm							
Thru			•				
Right	_1						
Southbound	1						
Prot Perm							
Left	L	126	1604	# O OO	0 10	7.60	
Prot	11	120	1624	# 0.08	0.10	168	0.75
Perm							
Thru							
Right	R	64	1454	0.04	0.10	150	0.43
g.v		0.1	1101	0.01	0.10	230	0.43
Sum of flo	ow ratios	s for critic	al lane gro	ups, Yc	= Sum	(v/s) =	0.75
		er cycle, I				, , , ,	
		e to capacit			= (Yc)(C))/(C-L) =	0.84
					,		
Control De	elay and	LOS Determi	.nation	_			
Appr/ Ra	atios (Jnf Prog	Lane Incre	mental	Res Lai	ne Group	Approach
Lane		Del Adj	Grp Facto	r Del	Del		
Grp v/c	g/C d	dl Fact	Cap k	d2	d3 De	elay LOS	Delay LOS
Eastbound							
L 0.10		2.2 1.000		0.1	0.0 2.4		
T 0.36	0.79 2	2.9 1.000	1282 0.11	0.2	0.0 3.3	l A	3.0 A
()			•				
Westbound							
mm 0 0.5							
TR 0.85	0.79 6	5.2 1.000	1271 0.38	5.9	0.0 12	.1 в	12.1 B
No who be a second	1						
Northbound	٠ .						
Southbound	1						
L 0.75		39.7 1.000	160 0 27	10.0	0.0.50	= =	
н 0.70	0.10 2	99.1 I.UUU	168 0.31	18.8	0.0 58	.5 E	ro o -
							52.3 D

Fax:

Phone: E-Mail:

OPERATIONAL ANALYSIS_____

Analyst:

CFD

Agency/Co.:

Agency/Co.:

Date Performed:

Analysis Time Period:

Intersection:

Area Type:

Jurisdiction:

Analysis Year:

Project ID: Wooster and Watterson

2008

CFD

Barr & Prevost

4/15/2008

7:30 AM-8:30 AM

Wooster and Watterson

CBD or Similar

Fairfax, Ohio

2008

Project ID: Wooster and Watterson: 1 Lane+Close Midas+Close 4 st on Nside

E/W st: US 50

N/S St: Watterson

	VOLUME DATA	711	
Eastbound	Westbound	Northbound	Southbound
L T R	[LTR	L T R	LTR
Volume 30 417 % Heavy Veh 0 5	877 104 5 0		1113 65
PHF 10.90 0.90	0.90 0.90		0.90 0.90
Hi Ln Vol	244 29 		31 18
<pre>% Grade</pre>	0 1900		
ParkExist NumPark	1 1900		1900
No. Lanes 1 1 0 LGConfig L T	0 1 0 TR	0 0 0	
Lane Width 12.0 12.0 RTOR Vol	12.0		L R
Adj Flow 33 463 %InSharedLn	1078		7 126 64
Prop LTs 1.000 0.000	0.000		
Prop RTs 0.000 Peds Bikes	0.096 1	0	1.000
Buses 0 0 %InProtPhase	0	J	10 0 1
	Type: CBD or Simi	lar	T t

OPERATING PARAMETERS____

	Ea L 	stbound T R	W	estbound T R	L	orthbound T R	Sou	thbound T R
Init Unmet	10.0	0.0	_i	0.0			! 	!
Arriv. Type	3	3	i	3	1		10.0	0.0 [
Unit Ext.	13.0	3.0	i	3.0	1		13	3
I Factor	İ	1.000	i	1.000	1		[3.0	3.0
Lost Time	12.0	2.0	i	2.0	l t		i i	1.000
Ext of q	12.0	2.0	1	2.0	1		12.0	2.0
Ped Min g	, _ , U		į I				12.0	2.0
······ 9	,		1	3.2	ı	3.2	1	3.2

LaneGroup L TR		Eastbound	Westbound	Northbound	Southbound
Flow Rate 97 804 133 423 106 171 31 43 43 50 1900	LaneGroup	L TR	L TR	l LT R	
So 1900 1900 1900 1900 1509 1100 100 1000 100	Init Queue	[0.0 0.0	10.0 0.0	0.0 0.0	10.0 0.0
No.Lanes 1	Flow Rate	97 804	133 423	106 171	[31 43]
SL	So	1900 1900	1900 1900	1900 1900	1900 1900
<pre>LnCapacity 561</pre>	No.Lanes	1 1 0	11 1 0	0 1 1	11 1 0
Flow Ratio 0.1 0.5 0.3 0.3 0.1 0.1 0.0 0.0 v/c Ratio 0.17 0.75 0.45 0.39 0.51 0.69 0.16 0.17 Grn Ratio 0.66 0.66 0.66 0.66 0.17 0.17 0.17 0.17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1	SL	1845 1620	443 1624	1230 1454	1177 1519
v/c Ratio 0.17 0.75 0.45 0.39 0.51 0.69 0.16 0.17 Grn Ratio 0.66 0.66 0.66 0.66 0.17 0.17 0.17 0.17 I Factor 1.000 1.000 1.000 1.000 AT or PVG 3 3 3 3 3 3 Pltn Ratio 1.00	LnCapacity	561 1075	294 1077	209 247	200 258
Grn Ratio 0.66 0.66 0.66 0.66 0.17 0.17 0.17 0.17 1 0.00 1.000<	Flow Ratio	0.1 0.5	0.3 0.3	0.1 0.1	10.0 0.0
I Factor 1.000 1.000 1.000 1.000 1.000 AT or PVG 3 3 3 3 3 3	v/c Ratio	0.17 0.75	0.45 0.39	0.51 0.69	0.16 0.17
AT or PVG 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1	Grn Ratio	10.66 0.66	0.66 0.66	0.17 0.17	[0.17 0.17
Pltn Ratio 1.00 1.00 1.00 1.00 1.00 1.00	I Factor	1.000	1.000	1.000	1.000
Pltn Ratio 1.00 1.00 1.00 1.00 1.00 1.00	AT or PVG	13 3	13 3] 3 3	[3 3 j
Q1 0.6 9.0 1.1 3.2 1.6 2.7 0.4 0.6 kB 0.4 0.6 0.3 0.6 0.2 0.2 0.2 0.2 Q2 0.1 1.7 0.2 0.4 0.2 0.5 0.0 0.0	Pltn Ratio	1.00 1.00	[1.00 1.00	1.00 1.00	11.00 1.00
Q1 0.6 9.0 1.1 3.2 1.6 2.7 0.4 0.6 kB 0.4 0.6 0.3 0.6 0.2 0.2 0.2 0.2 Q2 0.1 1.7 0.2 0.4 0.2 0.5 0.0 0.0	PF2	11.00 1.00	[1.00 1.00	1.00 1.00	[1.00 1.00]
Q2 0.1 1.7 0.2 0.4 0.2 0.5 0.0 0.0	Q1	10.6 9.0	1.1 3.2	1.6 2.7	10.4 0.6
Q2 0.1 1.7 0.2 0.4 0.2 0.5 0.0 0.0	kВ	0.4 0.6	10.3 0.6	0.2 0.2	•
·	Q2	0.1 1.7	10.2 0.4	0.2 0.5	•
Q Average 0.7 10.6 1.3 3.6 1.8 3.2 0.5 0.7	Q Average	0.7 10.6	11.3 3.6	1.8 3.2	•
Q Spacing 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Q Spacing	J25.0 25.0	125.0 25.0		·
Q Storage 0 0 0 0 0 0			-		•
Q S Ratio	Q S Ratio	1	İ	1	i
70th Percentile Output:	70th Percen	tile Output:			,
fB% 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	fB%	1.2 1.2	1.2 1.2	1.2 1.2	11.2 1.2
BOQ 0.8 12.5 1.5 4.3 2.2 3.8 0.6 0.8	BOQ	10.8 12.5	11.5 4.3	2.2 3.8	10.6 0.8
QSRatio	QSRatio	1			i
85th Percentile Output:	85th Percen	tile Output:			•
fB% 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6	fB%	11.6 1.5	11.6 1.6	1.6 1.6	1.6 1.6
BOQ 1.1 16.0 2.0 5.6 2.9 5.0 0.8 1.1	BOQ	1.1 16.0	12.0 5.6	2.9 5.0	[0.8 1.1]
QSRatio	QSRatio]	l	I	İ
90th Percentile Output:	90th Percen	tile Output:			
fB% 1.8 1.6 1.8 1.7 1.8 1.7 1.8	fB%	1.8 1.6	1.8 1.7	1.8 1.7	1.8 1.8
BOQ 1.2 17.3 2.3 6.2 3.2 5.6 0.9 1.2	BOQ	11.2 17.3	2.3 6.2	3.2 5.6	[0.9 1.2 [
QSRatio	QSRatio	1	1	1	T i
95th Percentile Output:	95th Percent	tile Output:			
fB% 2.1 1.8 2.1 2.0 2.0 2.0 2.1 2.1	£B%	2.1 1.8	2.1 2.0	2.0 2.0	12.1 2.1
BOQ 1.4 19.4 2.6 7.1 3.7 6.4 1.0 1.4	BOQ	11.4 19.4]2.6 7.1	1 3.7 6.4	1.0 1.4
QSRatio		l	1	•	İ
98th Percentile Output:					
fB% 2.6 2.1 2.6 2.5 2.6 2.5 2.7 2.7	fB%	2.6 2.1		2.6 2.5	2.7 2.7
BOQ 1.8 22.7 3.3 8.8 4.7 7.9 1.3 1.7	BOQ	11.8 22.7	3.3 8.8	4.7 7.9	1.3 1.7
QSRatio	QSRatio	1	1	1	i i
				· · · · · · · · · · · · · · · · · · ·	*·····

ERROR MESSAGES

No errors to report.

```
Number of lanes in opposing approach, No
                                                                     1
Adjusted LT flow rate, VLT (veh/h)
                                                                     94
Proportion of LT in LT lane group, PLT
                                                         0.000 0.000 0.887 0.000
Proportion of LT in opposing flow, PLTo
                                                                     0.00
Adjusted opposing flow rate, Vo (veh/h)
                                                                     43
Lost time for LT lane group, tL
                                                                     5.00
Computation
LT volume per cycle, LTC=VLTC/3600
                                                                     1.57
Opposing lane util. factor, fLUo
                                                         1.000 1.000 1.000 1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
                                                                     0.72
qf=G[exp(- a * (LTC ** b))]-tl, gf<=g</pre>
                                                                     0.0
Opposing platoon ratio, Rpo (refer Exhibit 16-11)
                                                                     1.00
Opposing Queue Ratio, qro=Max[1-Rpo(qo/C),0]
                                                                     0.83
qq, (see Exhibit C16-4,5,6,7,8)
                                                                     0.00
gu=g-gq if gq>=gf, or = q-qf if qq<qf
                                                                     10.20
n=Max(qq-qf)/2,0)
                                                                     0.00
PTHo=1-PLTo
                                                                     1.00
PL*=PLT[1+(N-1)g/(gf+qu/EL1+4.24)]
                                                                     0.89
EL1 (refer to Exhibit C16-3)
                                                                     1.44
EL2=Max((1-Ptho**n)/Plto, 1.0)
fmin=2(1+PL)/g or fmin=2(1+Pl)/g
                                                                     0.37
gdiff=max(gg-gf,0)
                                                                     0.00
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)
flt=fm=[qf/q]+[qu/q]/[1+PL(EL1-1)]+[gdiff/q]/[1+PL(EL2-1)], (fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
                                                                     0.719
For special case of single-lane approach opposed by multilane approach,
see text.
* If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto
  left-turn lane and redo calculations.
** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm.
For special case of multilane approach opposed by single-lane approach
or when gf>gq, see text.
               SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET
                                                        EВ
                                                               WB
                                                                     NB
                                                                           SB
```

Permitted Left Turns Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Pedestrian flow rate, Vpedg (p/h) OCCpedg Opposing queue clearing green, gq (s) Eff. ped. green consumed by opp. veh. queue, gq/gp OCCpedu Opposing flow rate, Vo (veh/h) occr Number of cross-street receiving lanes, Nrec Number of turning lanes, Nturn ApbT Proportion of left turns, PLT Proportion of left turns using protected phase, PLTA Left-turn adjustment, fLpb Permitted Right Turns Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Conflicting bicycle volume, Vbic (bicycles/h) Vpedq OCCpedq Effective green, q (s)

Vbicq

75 /	-		, a , o a c	5 T O W	OTCC!!	Patié Gi	.oup
Appr/ Mvmt	Lane Group	Flow Rate (v)	Flow Rate (s)	Ratio (v/s)	Ratio (g/C)	Capacity (c)	v/c Ratio
					(9/0/	(0)	NACIO
Eastbound	Ė						
Prot							
Perm							
Left	L	97	845	0.11	0.66	561	0.17
Prot							
Perm							
Thru	TR	804	1620	# 0.50	0.66	1075	0.75
Right							
Vestbound	i						
Prot							
Perm							
Left	L	133	443	0.30	0.66	294	0.45
Prot						231	0.45
Perm							
Thru	TR	423	1624	0.26	0.66	1077	0.39
Right					0.00	1011	0.39
orthboun	.d						
Prot							
Perm							
Left							
Prot							
Perm							
Thru	LT	106	1230	0.09	0.17	200	0 = 1
Right	R	171	1454	# 0.12	0.17	209	0.51
outhboun		± , ±	7701	# U.12	0.17	247	0.69
Prot							
Perm							
Left	L	31	1177	0.03	0 17	0.00	
Prot	-	-	TT ()	0.03	0.17	200	0.16
Perm							
Thru	TR	43	1519	0.03	0 17	0.5.0	0.45
Right		7.7	エコエコ	0.03	0.17	258	0.17

Sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.61 Total lost time per cycle, L = 10.00 sec Critical flow rate to capacity ratio, Xc = (Yc)(C)/(C-L) = 0.74

Control Delay and LOS Determination_

App: Lane		tios	Unf Del	Prog Adj	Lane Grp	Increm Factor		Res Del	Lane G	roup	Appro	ach
Grp	v/c	g/C	d1	Fact	Cap	k	d2	d3	Delay	LOS	Delay	Los
East	bound		·					-				
L	0.17	0.66	3.8	1.000	561	0.11	0.1	0.0	4.0	А		
TR	0.75	0.66	6.7	1.000	1075	0.30	3.0	0.0	9.7	A	9.1	A
West	bound											
Ŀ	0.45	0.66	4.9	1.000	294	0.11	1.1	0.0	6.0	A		
TR	0.39	0.66	4.6	1.000	1077	0.11	0.2	0.0	4.8	A	5.1	A
Nort	hbound											
LT	0.51	0.17	22.6	1.000	209	0.12	2.0	0.0	24.7	С	29.1	~
R	0.69	0.17	23.4	1.000	-	0.26	8.4	0.0	31.8	C	23.1	С
Sout	hbound				_ ·	20	J. 1	0.0	J U	C		
L	0.16	0.17	21.2	1.000	200	0.11	0.4	0.0	21.6	С		
TR	0.17	0.17	21.3	1.000	258	0.11	0.3	0.0	21.6	C	21.6	С

Phone:

Fax:

E-Mail:

OPERATIONAL ANALYSIS_____

Analyst:

CFD

Agency/Co.:

Barr & Prevost

Agency/Co.:
Date Performed: 4/15/2008
Analysis Time Period: 4:45 PM-5:45 PM
US 50 and Meadow

Intersection:

US 50 and Meadowlark

CBD or Similar

Area Type: Jurisdiction: Analysis Year:

Fairfax, Ohio

2008

Project ID: Meadowlark PM: 1 lane Dragon Way is open

E/W St: US 50

N/S St: Meadowlark/Wooster Pike

VOLUME DATA_____

	Ea:	stbou	nd	Wes	stbou	nd	No	rthbo	und	Soi	ıthboı	ınd
	L	\mathbf{T}	R	l L	T	R	L	T	R	L	Т	R
17 - 7	107	686	2.0	1100	270	1 2	<u> </u>	1.3	777	I	7.0	
Volume	87		38	120	370	11	85	11	171	28	10	29
% Heavy Veh		5	0	10	5	0	0	0	0	10	0	0
PHF	0.90	0.90	0.90	10.90	0.90		10.90	0.90	0.90	10.90	0.90	0.90
PK 15 Vol	24	191	11	33	103	3	24	3	48	8	3	8
Hi Ln Vol	1						1					•
% Grade	ĺ	0		1	0		1	0		1	0	
Ideal Sat	1900	1900		11900	1900		1	1900	1900	11900	1900	
ParkExist	Ì			i			í			i		
NumPark	I			i			í			i		
No. Lanes	I 1	7	0	1 1	1	0	I 0	1	7	1	1	0
	L	TR	_	L	TR	_	1	LT	R	i L	TR	Ū
-	12.0			112.0			1	12.0		112.0		
RTOR Vol	1 7 2 . 0		٥	1 1 2 . 0	12.0	Ω	1	12.0	17	112.0	12.0	
	1	004	U	1100	400	U	1	100		1	4.0	0
-	•	804		133	423		!	106	171	31	43	
%InSharedLn	•											
Prop LTs	11.000	0.0	00	11.000	0.0	0.0		0.8	97	11.00	0.00	0.0
Prop RTs	0	.052		0.	.028		0	.000	1.000] 0	.744	
Peds Bikes	1:	2		1			1 0			1 0		
Buses	3	0		0	0		1	0	0	0	0	
%InProtPhase	e			i			i			i		
Duration	1.00		Area	Type:	CBD 6	or Sim	ilar			•		

OPERATING PARAMETERS_____

	Ea L	stbound T	i j R I L	Westbou:		No: L	rthbo T	und R	So	uthbound T I	•
	"	•	1 1	, ±	1 1	נו	+	17	1 4	, I	N
Init Unmet	100	0 0	'0.	0 0.0	¦		0.0	0.0	¦	0.0	
	,	0.0	10.	0.0	1		0.0	0.0	10.0	0.0	ı
Arriv. Type	∍ 3	3	3	3	J		3	3	13	3	
Unit Ext.	[3.0	3.0	13.	0 3.0]		3.0	3.0	13.0	3.0	1
I Factor	1	1.000	Ì	1.00	0 1		1.00	0	1	1.000	I
Lost Time	12.0	2.0	12.	0 2.0	1		2.0	2.0	12.0	2.0	İ
Ext of g	[2.0	2.0	2.	0 2.0	1		2.0	2.0	12.0	2.0	1
Ped Min q	1	3.3	1	3.2			3.2		1	3.2	1

	#42CDOdlid	westbound	Northbound	Southbound
LaneGroup	L TR	L TR	L TR	L TR 1
Init Queue	0.0 0.0	10.0 0.0	10.0 0.0	10.0 0.0
Flow Rate	112 376	101 857	31 218	123 52
So	1900 1900	1900 1900	1900 1900	11900 1900
No.Lanes	11 1 0	11 1 0	J1 1 0	11 1 0
SL	377 1589	1896 1614	1236 1472	1855 1542
LnCapacity	•	591 1064	1242 288	1167 302
Flow Ratio		0.1 0.5	0.0 0.1	10.0 0.0
	[0.05 0.36	[0.17 0.8]	0.13 0.76	0.14 0.17
Grn Ratio	0.66 0.66	0.66 0.66	0.20 0.20	0.20 0.20
	1.000	1.000	1.000	1.000
	3 3	13 3	13 3	13 3
Pltn Ratio	11.00 1.00	1.00 1.00	11.00 1.00	11.00 1.00
	1.00 1.00	11.00 1.00	11.00 1.00	11.00 1.00
Q1	0.1 3.2	0.7 11.9	10.5 3.9	0.4 0.8
kB	0.3 0.6	10.4 0.6	0.3 0.3	10.2 0.3
Q2	10.0 0.3	0.1 2.5	10.0 0.8	0.0 0.1
Q Average	0.1 3.6	0.8 14.4	0.5 4.8	10.4 0.9
Q Spacing	25.0 25.0	125.0 25.0	25.0 25.0	125.0 25.0
Q Storage	0 0	10 0	10 0	10 0 1
Q S Ratio	1		1- 0	
70th Percent	tile Output:	•	•	ı
	1.2 1.2	11.2 1.2	11,2 1,2	11.2 1.2
BOQ	0.1 4.2	1.0 16.8	10.6 5.7	0.5 1.1
QSRatio			1	10.5 1.1
85th Percent	ile Output:	•	,	1
	1.6 1.6]1.6 1.5	1.6 1.6	1.6 1.6
BOQ	0.2 5.6	11.3 21.4	0.8 7.5	10.6 1.4
QSRatio		i	1	10.0
90th Percent	ile Output:	•	•	1 [
	1.8 1.7	1.8 1.6	11.8 1.7	1.8 1.8
BOQ [0.2 6.2	1.5 23.0	10.9 8.2	0.7 1.6
QSRatio		i	1	1
95th Percent	ile Output:	•	'	1
fB%	2.1 2.0	2.1 1.8	2.1 2.0	2.1 2.1
BOQ	0.2 7.1	11.7 25.5	11.1 9.4	0.8 1.8
QSRatio		1		10.0 1.0
98th Percent	ile Output:	•	•	1
	2.7 2.5	12.6 2.0	12.7 2.4	2.7 2.6
BOQ	0.3 8.7	12.2 29.2	11.4 11.5	11.1 2.3
QSRatio		1		14-7 4-3
			•	•

ERROR MESSAGES_____

No errors to report.

```
Number of lanes in opposing approach, No
Adjusted LT flow rate, VLT (veh/h)
Proportion of LT in LT lane group, PLT
                                                        0.000 0.000 0.000 0.000
Proportion of LT in opposing flow, PLTo
Adjusted opposing flow rate, Vo (veh/h)
Lost time for LT lane group, tL
Computation
LT volume per cycle, LTC=VLTC/3600
Opposing lane util. factor, fLUo
                                                        1.000 1.000 1.000 1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
gf=G[exp(- a * (LTC ** b))]-tl, gf<=g
Opposing platoon ratio, Rpc (refer Exhibit 16-11)
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
qq, (see Exhibit C16-4,5,6,7,8)
gu=g-gq if gq>=gf, or = g-qf if qq<qf
n=Max(qq-qf)/2,0)
PTHo=1-PLTo
PL*=PLT[1+(N-1)g/(gf+qu/EL1+4.24)]
EL1 (refer to Exhibit C16-3)
EL2=Max((1-Ptho**n)/Plto, 1.0)
fmin=2(1+PL)/g or fmin=2(1+Pl)/g
gdiff=max(gq-gf,0)
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)], (fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
```

For special case of single-lane approach opposed by multilane approach, see text.

- * If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.
- ** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS Permitted Left Turns	WORKSHEET			
Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Pedestrian flow rate, Vpedg (p/h) OCCpedg Opposing queue clearing green, gq (s) Eff. ped. green consumed by opp. veh. queue, gq/gp OCCpedu	EB	WB	NB	SB 13.5 0 0 0.000 2.65 0.196
Opposing flow rate, Vo (veh/h) OCCr Number of cross-street receiving lanes, Nrec Number of turning lanes, Nturn ApbT Proportion of left turns, PLT Proportion of left turns using protected phase, PLTA Left-turn adjustment, fLpb				0.000 218 0.000 1 1 1.000 1.000 0.000
Permitted Right Turns Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Conflicting bicycle volume, Vbic (bicycles/h) Vpedg OCCpedg Effective green, g (s) Vbicg			13.5 0 0 0 0.000 13.5	

,		Adj	Adj Sat	Flow	Green	Lane (Group
Appr/	Lane	Flow Rate		Ratio	Ratio	Capacity	
Mvmt	Group	(v)	(s)	(v/s)	(g/C)	(c)	Ratio
Eastbound			T				
Prot	_						
Perm							
Left	L	12	377	0.03	0.66	249	0.05
Prot							0.00
Perm							
Thru	TR	376	1589	0.24	0.66	1048	0.36
Right							
Vestbound	i						
Prot							
Perm							
Left	L	101	896	0.11	0.66	591	0.17
Prot							
Perm							
Thru	TR	857	1614	# 0.53	0.66	1064	0.81
Right							
rthboun	ıd						
Prot							
Perm							
Left	L	31	1236	0.03	0.20	242	0.13
Prot							
Perm							
Thru	TR	218	1472	# 0.15	0.20	288	0.76
Right							
uthboun	a						
Prot							
Perm	7		05#		_		
Left	L	23	855	0.03	0.20	167	0.14
Prot Perm							
Thru	TR	52	7 5 4 0				
Right	IK	52	1542	0.03	0.20	302	0.17
Nagare							
m of flo	ow rati	os for criti	cal lane gro	ups. Yc	= Sum	(v/s) =	0.68
		per cycle,			- un	, 5, –	5.00
		te to capaci			= (Yc)(C))/(C-L) =	0.79
					. , , , - ,	,	
		d LOS Determ					
-	atios	Unf Prog		mental		ne Group	Approach
ine	/	Del Adj	Grp Facto		Del		
p v/c	g/c	dl Fact	Cap k	d2	d3 De	elay Los	Delay LOS
stbound							
	0 60	4 1 3 222	040 0			_	
0.05 0.36	0.66	4.1 1.000		0.1	0.0 4.2		
0.36	0.66	5.2 1.000	1048 0.11	0.2	0.0 5.5	5 A	5.4 A
المستعددات	_						
stbound	0.66	1.5 1.000					
0.17		4.5 1.000		0.1	0.0 4.6		
0.81	0.66	8.5 1.000	1064 0.35	4.8	0.0 13.	.3 B	12.4 B
+ h h - · · · ·	1						
rthbound		00 p =	0.40				
0.13 0.76	0.20	22.9 1.000		0.2	0.0 23.		
0.76	0.20	26.2 1.000	288 0.31	11.8	0.0 38.	0 D	36.1 D
. <u> </u>	1						
ıthbound		70 n i 65-	160				
0.14	0.20	22.9 1.000		0.4	0.0 23.		
0.17	0.20	23.1 1.000	302 0.11	0.3	0.0 23.	4 C	23.4 C

HUS+: Signalized intersections Release 5.2

Phone:

Fax:

E-Mail:

OPERATIONAL ANALYSIS_____

Analyst:

CFD

Agency/Co.:

Barr & Prevost

Agency/Co.:
Date Performed:
Analysis Time Period:
Thtersection:

Date 2/15/2008
7:30 AM-8:30 AM
US 50 and Meadowlark

Area Type:

CBD or Similar

Jurisdiction: Analysis Year:

Fairfax, Ohio

2008

Project ID: Meadowlark AM: 1 lane+Dragon Way Open

E/W st: US 50

N/S St: Meadowlark/Wooster Pike

VOLUME DATA_____

	Eas	stbou	nd	We:	stbou	nd	No.	rthbo	und	Sot	ıthboı	ınd I
	L	T	R	L	${f T}$	R	L	T	R	L	T	R į
Volume	 11	285	59	<u></u> 91	765	11] 28	14	202	 21	16	35
告 Heavy Veh	•	5	0	10	5	0	10	0	0	10	0	0
-	0.90	_	_	10.90	_	•	10.90	0.90	_	10.90	0.90	0.90
PK 15 Vol	13	79	16	125	213	3	B	4	56	16	4	10 1
Hi Ln Vol]			1		-	i	-		1	•	10 1
% Grade		٥		j	0		ì	0		i	٥.	1
Ideal Sat	1900	1900		11900	1900		11900	1900		11900	1900	i
ParkExist				1						i		i
NumPark				1						Ì		i
No. Lanes	1	1	0	1	1	0	1	1	0] 1	1	0 j
LGConfig	L	TR		L	TR		L	TR		L	TR	i
Lane Width	12.0	12.0		12.0	12.0		112.0	12.0		12.0	12.0	i
RTOR Vol			6	1		5	ļ		20	[4
	1.2	376		101	857		31	218		123	52	1
%InSharedLn	,			1			•			1		1
Prop LTs	1.000	0.00	00	11.000	0.00	0.0	1.000	0.0	0.0	1.000	0.00	00
Prop RTs		157		0.	.008		[0.	.927		0.	654	
Peds Bikes				0			0	ſ)	1 0		1
	0	2		0	2		0	0		10	0	
%InProtPhase				1]			1		1
Duration	1.00		Area	Type:	CBD o	or Sim	ilar					

__OPERATING PARAMETERS_____

	Ea L	stbound T R	We	stbound T R	No L	rthbound T R	So	uthbound T R
Init Unmet	10.0	0.0	-¦	0.0	-¦	0.0	_1	0.0
Arriv. Typ	•	3	13	3	13	3.0	13	3
Unit Ext.	13.0	3.0	13.0	3.0	13.0	3.0	13.0	3.0
I Factor	i	1.000	i	1.000		1.000	1	1.000
Lost Time	12.0	2.0	12.0	2.0	12.0	2.0	12.0	2.0
Ext of g	12.0	2.0	2.0	2.0	2.0	2.0	12.0	2.0
Ped Min g	1	3.2	ĺ	3.2	İ	3.2	i	3.2

		· · · · · · · · · · · · · · · · · · ·	NOT CHROMING	Southbould
LaneGroup	LTR	LTR	LTR	LTR
Init Queue		0.0	0.0	1 0.0
Flow Rate	619	1 342	I 6	J 307 i
So	1900	1900	1900	1 1900
No.Lanes	10 2 0	10 2 0	10 1 0	10 1 0 1
SL	1478	1535	l 1479	1282
LnCapacity		767	1 493	1 427
Flow Ratio	0.4	1 0.2	0.0	0.2
v/c Ratio	0.84	0.45	0.01	0.72
Grn Ratio	0.50	0.50	1 0.33	1 0.33
I Factor	1.000	1.000	1.000	1.000
AT or PVG	1 3] 3] 3	1 3
Pltn Ratio	1.00	1.00	1.00	1.00
PF2	1.00	1.00	1.00	1 1.00
Ql	8.9	3.7	0.1	4.5
kB	1 0.7	0.7	0.5	1 0.5
Q2	3.4	0.6	0.0	1.2
Q Average	12.3	4.2	0.1	5.7
Q Spacing	25.0	1 25.0	25.0	25.0
Q Storage	0	l 0	1 0	1 25.0
Q S Ratio	}	i I	1	1 0 1
70th Percent	tile Output:	f	•	1
fB%	1.2	1.2	1.3	
BOQ	14.8	5.3	0.1	1.2
OSRatio	1	, J.J	1 0.1	7.0
85th Percent	ile Output:	I	1	1 1
fB%	1.4	1.5	1.7	
BOQ	17.5	6.5	0.1	1.5
QSRatio		1 0.5	1 0.1] 8.5
90th Percent	ile Outnut:		1	ı
fB%	1.5	1.7	1 2.0	
BOQ	18.9	7.3	0.1	1.7
QSRatio		7.3	1 0.1	9.4
95th Percent	ile Output:		1	1
fB%	1.7	2.0	1 2.6	
BOQ	20.7	8.6	0.2	1.9
QSRatio !	20.7	5.0	1 0.2	10.9
98th Percent	ile Output:		I]
fB%	1.8 I	2.3		
BOQ	22.4	2.3 9.9	3.2	2.2
QSRatio	ا ب ش ب ت ا	צ. צ	0.2	12.4
20110 L	J		l I	1
	100.			

____ERROR MESSAGES_____

```
Number of lanes in opposing approach, No
                                                      2
                                                            2
                                                                  7
                                                                        ]
Adjusted LT flow rate, VLT (veh/h)
                                                      46
                                                            1
                                                                  3
                                                                        232
Proportion of LT in LT lane group, PLT
                                                      0.039 0.002 0.500 0.756
Proportion of LT in opposing flow, PLTo
                                                      0.00 0.04 0.76 0.50
Adjusted opposing flow rate, Vo (veh/h)
                                                      653
                                                            1179 307
                                                                        ő
Lost time for LT lane group, tL
                                                      5.00 5.00 5.00 5.00
Computation
LT volume per cycle, LTC=VLTC/3600
                                                      0.77 0.02 0.05 3.87
Opposing lane util. factor, fLUo
                                                      0.952 0.952 1.000 1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
                                                      5.72 10.32 5.12 0.10
gf=G[exp(- a * (LTC ** b))]-tl, gf<=g
                                                            23.6 12.6
                                                      9.5
                                                                        0.0
Opposing platoon ratio, Rpo (refer Exhibit 16-11)
                                                      1.00 1.00
                                                                  1.00
                                                                        1.00
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
                                                      0.50 0.50 0.67 0.67
gq, (see Exhibit C16-4,5,6,7,8)
                                                      2.06 10.73 6.15 0.00
gu=g-gq if gq>=gf, or = g-gf if gq< gf
                                                      20.53 6.37
                                                                  7.45 20.00
n=Max(gq-gf)/2,0)
                                                      0.00 0.00 0.00 0.00
PTHo=1-PLTo
                                                      1.00 0.96 0.24 0.50
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]
                                                      0.09 0.00 0.50 0.76
EL1 (refer to Exhibit C16-3)
                                                      2.76 4.68 1.90 1.38
EL2=Max((1-Ptho**n)/Plto, 1.0)
                                                      1.00 1.00 1.00 1.00
fmin=2(1+PL)/q or fmin=2(1+P1)/q
                                                      0.07 0.07 0.15 0.18
gdiff=max(qq-qf,0)
                                                      0.00 0.00 0.00 0.00
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)
                                                      0.90 1.00 0.88 0.78
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)], (fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
                                                      0.906 0.954 0.885 0.775
```

* If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.

** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

```
SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET
Permitted Left Turns
```

EB

WB

NB

sb

Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Pedestrian flow rate, Vpedg (p/h) OCCpedg Opposing queue clearing green, gq (s) Eff. ped. green consumed by opp. veh. queue, qq/qp OCCpedu Opposing flow rate, Vo (veh/h) occr Number of cross-street receiving lanes, Nrec Number of turning lanes, Nturn Proportion of left turns, PLT Proportion of left turns using protected phase, PLTA Left-turn adjustment, fLpb Permitted Right Turns Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Conflicting bicycle volume, Vbic (bicycles/h) Vpeda OCCpedg Effective green, g (s) Vbicq

	Appr/	Lane	r l	Ad] ow Rate		j Sat w Rate	Flow			Lane	-	
	Mvmt	Group		(v)	C EIO	w kale (s)	Ratio (v/s)		tio (/C)	Capacit (c)	y v/c Rati	
Eas	stbound	·							- , 			
	Prot	4										
	Perm											
	Left											
	Prot											
	Perm											
	Thru	LTR		1179	2	815	# 0.42	0.	50	1408	0.84	
	Right											
	tbound											
	Prot											
	Perm											
	Left Prot											
	Perm											
	Thru	LTR		653		201						
	Right	пти		603	2:	924	0.22	0.	50	1462	0.45	
	thboun	d										
	Prot	u										
	Perm											
	Left											
	Prot											
	Perm											
	Thru	LTR		6	7.4	179	0.00	0	33	493	0.01	
	Right				_	., .	0.00	υ.	33	433	0.01	
Sou	thbound	d										
	Prot											
	Perm											
	Left											
	Prot											
	Perm											
	Thru	LTR	3	307	12	82	# 0.24	0.	33	427	0.72	
ŀ	Right											
Sum	of flo	ow rati	os foi	criti	cal la	ne aro	ups, Yc	= s	um (v	/51 =	0.66	
TOUG	T TOST	: time	per cy	/cle,	L = 10	1.00 sei	: :	J	ω <i>π</i> ι (υ	, 5, –	0.00	
Crit	cical f	low ra	te to	capaci	ty rat	io,		= (Yc)(C)/	(C-L) =	0.79	
								•		,,	0.75	
Appr	:/ Ra	tios:	.a LOS Unf	Determ	inatio Lane		nental	Dos	T		·	
Lane			Del	Adj	Grp	Factor		Res Del	Lane	Group	Appro	ach
Grp	v/c	g/C	d1	Fact	Cap	k	d2	q3	De 1	ay Los	Delay	. T.O.O.
									DET	ay nos	perañ	LOS
East	bound											
LTR	0.84	0.50	12.9	1.000	1408	0.50	6.4	0.0	19.3	В	19.3	1 2
West	bound							0.0	10.5	ם	19.3	В
LTR	0.45	0.50	9.7	1.000	1462	0.50	1.0	0.0	10.6	В	10.6	B
Nort	hbound							•				
LTR	0.01	0.33	13.4	1.000	493	0.50	0.0	0.0	13.4	В	13.4	В
Sout	hbound										· •	-
LTR	0.72	0.33	17.5	1.000	427	0 50	10 6	0 0	05 -			
			J	1.000	741	0.50	10.6	0.0	28.1	С	28.1	С

HCS+: Signalized Intersections Release 5.2

Phone:

Fax:

E-Mail:

____OPERATIONAL ANALYSIS_____

Analyst:

CFD

Agency/Co.:

Agency/Co.:
Date Performed:
Analysis Time Period:
Thtersection:

Date 2/18/2008
4:45 PM-5:45 PM
Wooster and Watterson

Intersection: Wooster and Wat
Area Type: CBD or Similar
Jurisdiction: Fairfax, Ohio
Analysis Year: 2008

Project ID: Wooster and Watterson Existing

E/W St: US 50

N/S St: Watterson

					VOLUM	E DATA	A		··-			
l	Ea:	stbou	nd	We	stbou	nd	l No.	rthbo	und	l So	athbo	und
 	L ₁	Т	R	ļ L	T	R	L	T	R	L	Т	R
Volume	41	1017	3	11	521	76	- <u> </u>	2	1	1209	n	67
% Heavy Veh	0	5	0	10	5	0	10	n	n	1205	0	0
PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	10.90		0.89
PK 15 Vol Hi Ln Vol	11	283	1	1 	145	21	11	1	1	158	0.30	19
<pre>% Grade </pre>		0		İ	٥			0		1	0	
Ideal Sat ParkExist NumPark		1900]]	1900		<u> </u> 	1900		 	1900	
No. Lanes LGConfig	. 0	2 LTF	0	 0	2	0	0	1	0	1 0	.1	0
Lane Width		12.0	`	 	LTF	Κ.	!	LTI	₹	1	LT	₹
RTOR Vol		12	0	1 I	12.0	1.0	1	12.0	_]	12.0	
Adj Flow %InSharedLn		1179	J	 	653	10	 	6	0	 	307	0
Prop LTs		0.03	39		0.00)2	i	0.50) n	! !	0.75	
Prop RTs	0.	003		0.	112		. 0.	167	. •	i I	244	, 0
Peds Bikes	3			3			i 1	,	•	1 0	- 13	
Buses %InProtPhase		0] [0		 	0			0	
Duration :	1.00		Area 1	Type:	CBD c	r Sim	ilar			ı		

OPERATING PARAMETERS_____

·	Eastbound	Westbound	Northbound	Southbound
	L T R	L T R	L T R	L T R
Init Unmet Arriv. Type Unit Ext.	0.0 3 3.0	0.0 3 3.0	0.0 3 3.0	 0.0 3 3.0
I Factor	1.000	1.000	1.000	1.000
Lost Time	2.0	2.0	2.0	1.000
Ext of g	2.0	2.0	2.0	2.0
Ped Min g	3.2	3.2	3.2	1.2.0

	Eastbound	Westbound	Northbound	Southbound
LaneGroup	LTR	LTR	i LTR	LTR
Init Queue		0.0	0.0	j 0.0 j
Flow Rate	1 259	562	1 5	158
So	1900	1900	1900	1900
No.Lales	10 2 0	[0 2 0	0 1 0	10 1 0 1
SL	1417	1540	1507	1 1314
LnCapacity	803	872	1 402	J 350 j
Flow Ratio	0.2	0.4	0.0	0.1
v∕c Ratio	0.32	0.64	0.01	0.45
Grn Ratio	0.57	0.57	0.27	0.27
I Factor	1.000	1.000	1.000	1.000
AT or PVG] 3	3	1 3	j 3 j
Pltn Ratio	1.00	1.00	1.00	1.00
PF2	1.00	1.00	1.00	1 1.00
Q1	1 2.3	6.4	0.1	i 2.2 i
kB	0.7	0.8	0.5	0.4
Q2	0.4	1.4	0.0	1 0.3
Q Average	2.6	7.8	0.1	1 2.5
Q Spacing	25.0	25.0	25.0	25.0
Q Storage	1 0	i o	1 0	1 0
Q S Ratio	1		İ	1
70th Percent	tile Output:		•	
fB%	1.3	1.2	1.3	1.3
BOQ	3.3	9.5	0.1	1 3.2
QSRatio			İ	1
85th Percent	tile Output:		•	,
fB%	1.6	1.5	1.7	1.6
BOQ	4.2	11.4	0.1	1 4.0
QSRatio	1		İ	1
90th Percent	ile Output:			•
fB%	1.8	1.6	1 2.0	1 1.8
BOQ	4.7	12.5	0.1	1 4.6
QSRatio			İ	i
95th Percent	ile Output:			,
fB% !	2.2	1.8	1 2.6	2.2
BOQ	5.8	14.1	0.2	5.6
QSRatio			İ	1
98th Percent	ile Output:			-
fB%	2.6	2.0	3.2] 2.6
BOQ	б.8	15.7	0.2	1 6.6
QSRatio	İ	!	İ	
			·	•

____ERROR MESSAGES_____

```
Number of lanes in opposing approach, No
                                                      2
                                                            2
                                                                  1
Adjusted LT flow rate, VLT (veh/h)
                                                      29
                                                            1
                                                                  3
                                                                        98
Proportion of LT in LT lane group, PLT
                                                      0.059 0.001 0.600 0.620
Proportion of LT in opposing flow, PLTo
                                                      0.00 0.06 0.62 0.60
Adjusted opposing flow rate, Vo (veh/h)
                                                      1071
                                                            495
                                                                  158
Lost time for LT lane group, tL
                                                      5.00 5.00 5.00 5.00
Computation
LT volume per cycle, LTC=VLTC/3600
                                                      0.48 0.02 0.05 1.63
Opposing lane util. factor, fLUo
                                                      0.952 0.952 1.000 1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
                                                      9.38 4.33
                                                                  2.63 0.08
gf=G[exp(~ a * (LTC ** b))]-tl, gf<=g
                                                      15.1
                                                            27.4
                                                                 9.0
                                                                        0.0
Opposing platoon ratio, Rpc (refer Exhibit 16-11)
                                                      1.00 1.00
                                                                  1.00
                                                                       1.00
Opposing Queue Ratio, qro=Max[1-Rpo(qo/C),0]
                                                      0.43 0.43
                                                                 0.73 0.73
gq, (see Exhibit C16-4,5,6,7,8)
                                                      6.82
                                                            0.00
                                                                 2.44 0.00
gu=g-gq if gq>=gf, or = g-gf if gq< gf
                                                      18.86 6.56 6.96
                                                                       16.00
n=Max(qq-qf)/2,0
                                                      0.00 0.00 0.00 0.00
PTHo=1-PLTo
                                                      1.00 0.94 0.38 0.40
PL*=PLT[1+(N-1)g/(qf+qu/EL1+4.24)]
                                                      0.14 0.00 0.60 0.62
EL1 (refer to Exhibit C16-3)
                                                      4.20 2.35 1.63 1.38
EL2=Max((1-Ptho**n)/Plto, 1.0)
                                                      1.00 1.00
                                                                 1.00 1.00
fmin=2(1+PL)/g or fmin=2(1+P1)/g
                                                      0.07 0.06
                                                                 0.20
                                                                       0.20
qdiff=max(gq-gf,0)
                                                      0.00 0.00 0.00 0.00
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)
                                                      0.83 1.00 0.88 0.81
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)], (fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
                                                      0.868 0.955 0.881 0.808
```

- * If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.
- ** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>qq, see text.

```
SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET

Permitted Left Turns

EB WB NB SB

Effective pedestrian green time, gp (s)

Conflicting pedestrian volume, Vped (p/h)

Pedestrian flow rate, Vpedg (p/h)

OCCpedg

Opposing queue clearing green, gq (s)

Eff. ped. green consumed by opp. veh. queue, gq/gp

OCCpedu
```

Opposing flow rate, Vo (veh/h)
OCCr
Number of cross-street receiving lance

Number of cross-street receiving lanes, Nrec Number of turning lanes, Nturn

TdqA

Proportion of left turns, PLT

Proportion of left turns using protected phase, PLTA

Left-turn adjustment, fLpb

Permitted Right Turns

Effective pedestrian green time, gp (s)

Conflicting pedestrian volume, Vped (p/h)

Conflicting bicycle volume, Vbic (bicycles/h)

Vpedq

OCCpedg

Effective green, g (s)

Vbicg

	Appr/	Lane	F	low Rat		ow Rate	riow Ratio		reen	Lane	Group-	
	Mvmt	Grou		(v)		(5)	(v/s)	• • •	atio g/C)	Capacit (c)	y v/c Rat:	
Ea	stboun	 d			·							
	Prot											
	Perm											
	Left											
	Prot											
	Perm Thru											
	Right	LTR		495	2	698	0.18	(0.57	1529	0.32	<u>)</u>
We	stbounc	i										
	Prot	•										
	Perm											
	Left											
	Prot											
	Perm											
	Thru	LTR		1071	2	933	# 0.37	(0.57	1662	0.64	
	Right									4.002	0.04	
Nor	thboun	d										
	Prot											
	Perm Left											
	Prot											
	Perm											
	Thru	LTR		5	7:	507	0 00	_				
	Right			-	1.	307	0.00	U	.27	402	0.01	
Sou	thbound	d										
	Prot											
	Perm											
	Left											
	Prot Perm											
	reim Thru	LTR		150								
	Right	TIL		158	13	114 #	0.12	0	.27	350	0.45	
	_											
Sum	of flo	w rat:	ios fo	r criti	cal la	ne grou	ıps, Yc	=	Sum (v	7/5) =	0.49	
100	ar TAR	- cime	per c	ycle,	L = 10	.00 sec	:			, 5, –	0.45	
CIII	lcal r	low ra	ate to	capaci	ty rat	io,	Хc	= (Y	c)(C)/	(C-L) =	0.58	
Cont	rol De	olav ar	id TOS	Determ						•		
Appı	:/ Ra	tios	Unf	Prog	ınatıo Lane	n Increm				··-		
Lane	<u> </u>		Del	Adj	Grp	Factor		Res Del	Lane	Group	Appro	ach
Grp	v/c	g/C	dl	Fact	Cap	k	d2	d3	Del	ay LOS	Delai	LOS
East	bound					·				-, 505	neral	, 1:02
2030	Dillipodi											*
LTR	0.32	0.57	6.9	1.000	1529	0.50	0.6	0 0	5 -			
				2.000	1027	0.50	0.6	0.0	7.5	A	7.5	A
West	bound											
LTR	0.64	0.57	8.9	1.000	1662	0.50	2.0	0.0	3 O O		3.5.5	
		•					2.0	0.0	10.8	В	10.8	В
Nort	hbound											
LTR	0.01	0.27	16.2	1.000	402	0.50	0.1	0.0	16.2	В	16.2	В
Sout	hbound											
LTR	0.45	0.27	18.3	1 000	25.5	0 5 5	_					
		~·=/	_U.J	1.000	330	0.50	4.2	0.0	22.6	С	22.6	С

HCS+: Signalized Intersections Release 5.2

Phone:

E-Mail:

Fax:

____OPERATIONAL ANALYSIS_____

Analyst:

CFD

Area Type: CBD or Similar
Jurisdiction: Fairfax, Ohio
Analysis Year: 2008

Project ID: Wooster and Watterson Existing

E/W St: US 50

N/S St: Watterson

VOLUME DATA_____

Eastb	ound	We	Westbound			rthbo	und	l So	uthbo	und
L T	R	L	T	R	L	Т	R	L	Т	R
Volume 26 41	7 3	' <u></u>	877	96	13	2	0	- <u></u>		52
ક Heavy Veh 0 5	0	0	5	0	10	0	0	10	0	0 0
PHF 0.90 O.	90 0.90	0.90	0.90	0.90	0.90	0.90	_	10.90	0.90	•
PK 15 Vol 7 11 Hi Ln Vol		1	244	27	1	1.	0	124	1	14
§ Grade 0		1	0		1	0		1	0	
Ideal Sat 19 ParkExist NumPark	00		1900		i 	1900]	1900	
•	2 0	0	2	0	1 0	1	0	1 0	1	0 1
- -	LTR	i	LTF	:	i	LTI	3	i	LTI	
Lane Width 12	. 0	1	12.0		1	12.0		i	12.0	
RTOR Vol	0	J		10	1		0	ì		0 1
Adj Flow 499 %InSharedLn	ō	 	1071		l 1	5		İ	158	
	. 059	1	0.00	1	I	0.60	00	1	0.62	20 i
Prop RTs 0.000	5	0.	090		0.	000		0.	367	i
Peds Bikes 0		1			0			j 0		i
Buses 0 %InProtPhase	•	[0		 	0		1	0	į
Duration 1.00	Area :	Type:	CBD o	r Simi	ilar			1		I

OPERATING PARAMETERS_____

! !	Eastbound L T R	Westbound L T R	Northbound	Southbound L T R
Init Unmet	0.0	0.0	! 0.0	ll
Arriv. Type	3	3	i 3.5	1 0.0 j
Unit Ext.	3.0	3.0	3.0	, 3.0 · 1
I Factor	1.000	1.000	1.000	1.000
Lost Time	2.0	2.0	2.0	1 2.0
Ext of g	2.0	1 2.0	2.0	1 2.0
Ped Min g	3.2	3.2	3.2	3.2

	rastbonud	westbound	Northbound	Southbound
LaneGroup	L TR	L TR	LT R	L TR
Init Queue		10.0 0.0	0.0 0.0	10.0 0.0
Flow Rate	197 422	1133 222	1 106 123	131 43
So	11900 1900	1900 1900	1 1900 1900	11900 1900
	11 2 0	ļ1 2 O	10 1 1	
	928 1619	680 1623	1 1230 1454	1177 1519
LnCapacity		424 667	1 328 388	1314 405
Flow Ratio		10.2 0.1	0.1 0.1	10.0 0.0
v/c Ratio		0.31 0.33		[0.10 0.11
Grn Ratio	0.62 0.41	(0.62 0.41	1 0.27 0.27	10.27 0.27
	1.000	1.000	1.000	1.000
	13 3	3 3	3 3	3 3
Pltn Ratio		11.00 1.00		11.00 1.00
PF2	1.00 1.00	11.00 1.00		11.00 1.00
Q1	0.9 8.4	11.3 3.8	2.1 2.5	10.6 0.8
kB	10.8 0.9	10.6 0.9	0.5 0.6	10.5 0.6
Q2	0.2 1.5	(0.3 0.4	0.2 0.3	0.1 0.1
Ω Average	11.1 9.9	11.6 4.2	1 2.4 2.7	10.6 0.9
Q Spacing	25.0 25.0	125.0 25.0		[25.0 25.0
Q Storage	0 0	10 0	1 0 0	10 0 1
Q S Ratio		i	i	
70th Percent	tile Output:	•	1	1
	1.3 1.2	11.3 1.2	1.3 1.3	[1.3 1.3]
BOQ	1.4 12.0	12.0 5.2	3.0 3.4	10.8 1.1
QSRatio (_	1	10.0 1.1
85th Percent	ile Output:		•	1
	1.6 1.4	11.6 1.5	1.6 1.6	11.7 1.7
BOQ į	1.8 14.2	12.6 6.4	3.8 4.3	11.1 1.5
QSRatio		İ	1	1 1 1
90th Percent	ile Output:		'	'
	1.9 1.6	11.9 1.7	1.8 1.8	11.9 1.9
BOQ [2.1 15.5	13.0 7.2	1 4.3 4.9	11.2 1.7
QSRatio		1	1 3.0	1 1 - 2 1 - 1
95th Percent	ile Output:	•	1	1
	2.4 1.7	12.3 2.0	1 2.2 2.2	2.5 2.4
BOQ	2.6 17.2	13.7 8.6		11.6 2.2
QSRatio		1	1 5.5 5.0	11.0 2.2]
98th Percent	ile Output:	•	1	1
	2.9 1.9	12.8 2.3	2.6 2.6	3.0 3.0
	3.2 18.8	14.5 9.9		11.9 2.6
QSRatio			1 0.3 /.0	11.3 2.0
,		1	1	1
	TERM	The state of the s		

ERROR MESSAGES_____

Adjusted LT flow rate, VLT (veh/h)		1
Proportion of LT in LT lane group, PLT	0 000 0 000	94
Proportion of LT in opposing flow, PLTo	0.000 0.000	0.887 0.000
Adjusted opposing flow rate, Vo (veh/h)		0.00
Lost time for LT lane group, tL		43
Computation group, 52		5.00
LT volume per cycle, LTC=VLTC/3600		2 25
Opposing lane util. factor, fLUo	0 052 0 052	2.35
Opposing flow, Volc=VoC/(3600(No)fLUo) (veh/ln/cyc)	0.932 0.932	1.000 1.000
gf=G(exp(- a * (LTC ** b))]-tl, gf<=g		1.08
Opposing platoon ratio, Rpo (refer Exhibit 16-11)		0.0
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]		1.00
gq, (see Exhibit C16-4,5,6,7,8)		0.73
gu=g-gq if gq>=gf, or = g-gf if gq <gf< td=""><td></td><td>0.00</td></gf<>		0.00
n=Max(gq-gf)/2,0)		24.00
PTHo=1-PLTo		0.00
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]		1.00
EL1 (refer to Exhibit C16-3)		0.89
EL2=Max((1-Ptho**n)/Plto, 1.0)		1.44
fmin=2(1+PL)/g or fmin=2(1+Pl)/g		_
gdiff=max(gq-gf,0)		0.16
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)		0.00
flt=fm=[af/a]+[an/a]/[1+pr/pra 1)], (min=rmin;max=1.00)		0.72
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EI or flt=[fm+0.91(N-1)]/N**	L2-1)], (fmin<=1	im<=1.00)
Left-turn adjustment, fLT		0.719
		J I J

- * If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.
- ** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS Permitted Left Turns	WORKS	SHEET_		
Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Pedestrian flow rate, Vpedg (p/h) OCCpedg Opposing queue clearing green, gq (s) Eff. ped. green consumed by opp. veh. queue, gq/gp OCCpedu Opposing flow rate, Vo (veh/h) OCCr Number of cross-street receiving lanes, Nrec Number of turning lanes, Nturn ApbT Proportion of left turns, PLT Proportion of left turns using protected phase, PLTA Left-turn adjustment, fLpb Permitted Right Turns	EB	WB	ИВ	SB 24.0 0 0.000 0.000 0.000 1.06 0.000 2 1 1.000 1.000 0.000
Effective pedestrian green time, gp (s) Conflicting pedestrian volume, Vped (p/h) Conflicting bicycle volume, Vbic (bicycles/h) Vpedg OCCpedg Effective green, g (s) Vbicg			24.0 0 0 0 0.000 24.0	

		Adj	Adj Sat	Flow	Green	Lane Gr	oup	
Appr/	Lane	Flow Rate	Flow Rate		Ratio	Capacity		
Mvmt	Group	(v)	(s)	(v/s)	(g/C)	(c)	Ratio	
Eastbound	<u>i</u>	A 1941	***************************************					
Prot		97	1605	0.06	0.156	250	0.39	
Perm		0	702	0.00	0.467	328	0.00	
Left	L	97			0.62	578	0.17	
Prot								
Perm								
Thru	TR	804	3084	# 0.26	0.41	1268	0.63	
Right								
Westbound	i							
Prot		133	1624	# 0.08	0.156	253	0.53	
Perm		Û	366	0.00	0.467	171	0.00	
Left	L	133			0.62	424	0.31	
Prot								
Perm								
Thru	TR	423	3092	0.14	0.41	1271	0.33	
Right								
Northbour	ıd							
Prot								
Perm								
Left								
Prot								
Perm								
Thru	$_{ m LT}$	106	1230	# 0.09	0.27	328	0.32	
Right	R	123	1454	0.08	0.27	388	0.32	
Southboun	ıd							
Prot								
Perm								
Left	L	31	1177	0.03	0.27	314	0.10	
Prot								
Perm								
Thru	TR	43	1519	0.03	0.27	405	0.11	
Right								

Sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.43 Total lost time per cycle, L = 15.00 sec Critical flow rate to capacity ratio, Yc = (Yc)(C)/(C-L) = 0.51

Control Delay and LOS Determination Appr/ Ratios Unf Proq Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del g/C dl Delay LOS Grp v/c Fact Cap d2 d3 Delay LOS k Eastbound 0.17 0.62 L 7.2 1.000 578 0.50 0.6 0.0 7.8 A 0.41 21.1 ΤR 0.63 1.000 1268 0.50 2.5 0.0 23.6 С 21.9 C Westbound 0.31 0.62 8.9 1.000 424 0.50 1.9 0.0 10.8 В TR0.33 0.41 18.1 1.000 1271 0.7 0.0 18.8 0.50 В 16.9 В Northbound LT 0.32 0.27 26.5 1.000 328 2.6 0.0 0.50 29.1 С 28.8 ¢ 0.32 0.27 26.4 1.000 388 R 0.50 2.1 0.0 28.6 С Southbound 0.10 0.27 24.9 0.6 1.000 314 0.50 0.0 25.5 С 0.11 0.27 24.9 1.000 405 0.5 TR0.50 0.0 25.4 ¢ 25.5 С

HCS+: Signalized Intersections Release 5.2

Phone:

Fax:

E-Mail:

OPERATIONAL ANALYSIS_____

Analyst:

CFD

Agency/Co.:

Barr & Prevost

Intersection:

Agency/Co.:

Date Performed:

Analysis Time Period:

4:45 PM-5:45 PM

115 50 and Meadow US 50 and Meadowlark

Area Type: CBD or Similar
Jurisdiction: Fairfax, Ohio
Analysis Year: 2008

E/W st: US 50

Project ID: PM Existing Conditions

N/S St: Meadowlark/Wooster Pike

VOLUME DATA______

	Ea	stbou	nd	We:	stboui	nd	No	rthbo	und	Sot	uthboi	und
	L	T	R	J L	T	R	L	${f T}$	R	L	T	R
_	ļ						.			.		
Volume	87	686	38	120	370	11	85	11	171	128	10	29
% Heavy Veh	10	5	0	10	5	0	10	0	0	10	0	0
PHF	10.90	0.90	0.90	10.90	0.90	0.90	10.90	0.90	0.90	10.90	0.90	0.90
PK 15 Vol	124	191	11	33	103	3	124	3	4 B	18	3	8
Hi Ln Vol	1			1			1			ļ		
% Grade	l	Q		1	0		1	O		1	0	
Ideal Sat	1900	1900		11900	1900		1	1900	1900	11900	1900	
ParkExist	Ì			Í			İ			İ		
NumPark	İ			i			ĺ			İ		
No. Lanes	i 1	2	0	1	2	0	0	1	1	, j 1	1	0
LGConfiq	L	TR		L	TR		i	$_{ m LT}$	R	l L	TR	
Lane Width	112.0	12.0		112.0	12.0		i	12.0	12.0	112.0	12.0	
RTOR Vol	ĺ		0	1		0	j		60	1		0
Adj Flow	197	804		1133	423		ì	106	123	i31	43	
%InSharedLn	i			1			i			i		
	11.00	0.0.0	იი	11.00	0.00	0.0	i	0.B	87	11.000	0 0.0	0.0
Prop RTs	•	.052		•	.028		iο	.000		•	.744	
Peds Bikes	=			1 1			0 1		0	0	• • • •	
Buses	13	0		10	TO.		1	n	0	10	0	
%InProtPhas	• -	U		•	U		1	U	U	1	v	
			***	1 0.0	CDD		1			I		
Duration	1.00		Area	Type:	CBD (or Sin	ilar					

OPERATING PARAMETERS

	Ea L	stbound T R	We	stbound T R	No	rthbound T R	So L	uthbound T R	
Init Unmet	<u> </u>	0 0	<u>'</u>	0.0	—¦——	0.0 0.0	¦	0.0	. !
	•		10.0	0.0	ì	0.0 0.0	10.0	0.0	1
Arriv. Typ	e 3	3	13	3	1	3 3	3	3	
Unit Ext.	3.0	3.0	13.0	3.0	1	3.0 3.0	13.0	3.0	
I Factor	1	1.000	1	1.000	1	1.000	1	1.000	
Lost Time	12.0	2.0	12.0	2.0	1	2.0 2.0	12.0	2.0	1
Ext of g	12.0	2.0	12.0	2.0	1	2.0 2.0	12.0	2.0	1
Ped Min g	1	3.3	1	3.2	1	3.2	1	3.2	

	ess chodild	westbound	Northbound	Southbound
LaneGroup	L TR	L TR	L TR	L TR
Init Queue		10.0 0.0	10.0 0.0	10.0 0.0
Flow Rate	112 189	101 450	31 129	123 46
So	1900 1900	11900 1900	1900 1900	11900 1900
No.Lanes	1 2 0	11 2 0	1 1 0	11 1 0
	690 1601	1018 1620	11243 1485	11149 1554
LnCapacity		1634 666	331 396	306 414
Flow Ratio		0.1 0.3	0.0 0.1	10.0 0.0
	10.03 0.29	10.16 0.68	10.09 0.33	0.08 0.11
	0.62 0.41	10.62 0.41	10.27 0.27	10.27 0.27
	1.000	1.000	1 1.000	1.000
	3 3	3 3	13 3	13 3
Pltn Ratio	11.00 1.00	11.00 1.00	11.00 1.00	11.00 1.00
PF2	11.00 1.00	11.00 1.00	11.00 1.00	11.00 1.00
Ql	0.1 3.2	11.0 9.2	0.6 2.6	10.4 0.9
kB	0.6 0.9	10.8 0.9	10.5 0.6	10.5 0.6
Q2	10.0 0.3	0.2 1.8	0.1 0.3	10.0 0.1
Q Average	0.1 3.5	11.1 10.9	10.6 2.9	10.5 0.9
Q Spacing		[25.0 25.0	[25.0 25.0	125.0 25.0
•	0 0	10 0	10 0	10 0 1
Q S Ratio		1	1	
70th Percent	tile Output:	•	·	1
		1.3 1.2	11.3 1.3	1.3 1.3
BOQ		(1.5 13.2	10.8 3.6	10.6 1.2
QSRatio		1	1	10.8 1.2
85th Percent	ile Output:	'	1	
		1.6 1.4	11.7 1.6]1.7 1.6
BOQ		11.9 15.7	11.1 4.5	10.8 1.6
QSRatio [1	1	10.0 1.0
90th Percent	ile Output:	'	1	1
		1.9 1.6	11.9 1.8	12.0 1.9
BOQ		12.2 17.0	11.2 5.1	10.9 1.8
QSRatio		1	1	1.8 1.8
95th Percent	ile Output:	I	I	1
		12.4 1.7	12.5 2.2	2.5 2.4
		2.7 18.7	11.6 6.2	·
QSRatio			1 4 . 0 0 . 2	11.2 2.3
98th Percent	ile Output:	1	1	1
	-	2.9 1.9	13.0 2.5	13 1 2 0
		3.3 20.4	11.9 7.3	3.1 2.9
QSRatio		10.0 20.1	1 1	1.4 2.8
		I	į.	I J

ERROR MESSAGES_____

```
Number of lanes in opposing approach, No
Adjusted LT flow rate, VLT (veh/h)
Proportion of LT in LT lane group, PLT
                                                        0.000 0.000 0.000 0.000
Proportion of LT in opposing flow, PLTo
Adjusted opposing flow rate, Vo (veh/h)
Lost time for LT lane group, tL
Computation
LT volume per cycle, LTC=VLTC/3600
Opposing lane util. factor, fLUo
                                                        0.952 0.952 1.000 1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
gf=G[exp(-a * (LTC ** b))]-tl, gf<=g
Opposing platoon ratio, Rpo (refer Exhibit 16-11)
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
gq, (see Exhibit C16-4,5,6,7,8)
gu=g-gq if gq>=gf, or = g-gf if gq< gf
n=Max(gq-gf)/2,0
PTHo=1-PLTo
PL*=PLT[1+(N-1)g/(qf+qu/EL1+4.24)]
ELI (refer to Exhibit C16-3)
EL2=Max((1-Ptho**n)/Plto, 1.0)
fmin=2(1+PL)/q or fmin=2(1+Pl)/q
gdiff=max(qq-qf,0)
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)], (fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
```

- * If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto left-turn lane and redo calculations.
- ** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm. For special case of multilane approach opposed by single-lane approach or when gf>gq, see text.

SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET_ Permitted Left Turns EB WB NB sbEffective pedestrian green time, gp (s) 24.0 Conflicting pedestrian volume, Vped (p/h) Pedestrian flow rate, Vpedg (p/h) n OCCpedq 0.000 Opposing queue clearing green, qq (s) 0.10 Eff. ped. green consumed by opp. veh. queue, gq/gp 0.004 OCCpedu 0.000 Opposing flow rate, Vo (veh/h) 129 OCCr 0.000 Number of cross-street receiving lanes, Nrec 2 Number of turning lanes, Nturn 7 ApbT 1.000 Proportion of left turns, PLT 1.000 Proportion of left turns using protected phase, PLTA 0.000 Left-turn adjustment, fLpb 1,000 Permitted Right Turns Effective pedestrian green time, gp (s) 24.0 Conflicting pedestrian volume, Vped (p/h) O Conflicting bicycle volume, Vbic (bicycles/h) 0 Vpedg OCCpeda 0.000 Effective green, g (s) 24.0 Vbicq 0

_	Adj	Adj Sat	Flow	Green	Lane Gr	coup
Lane Group	Flow Rate (v)	Flow Rate (s)	Ratio (v/s)	Ratio (g/C)	Capacity (c)	v/c Ratio
						
	12	1624	0.01	0.178	289	0.04
	0	316	0.00			0.00
L	12					0.03
TR	360	3050	0.12	0.41	1254	0.29
					2001	0.25
i						
	101	1624	# 0.06	0.178	289	0.35
	0	776				0.00
L	101					0.16
				0.02	001	0.10
TR	857	3086	# O.28	0 41	1269	0.68
			. 0,25	0.47	1200	0.00
ıd						
L	31	1243	U U 2	0 27	221	0 00
		#6.20	0.02	0.27	221	0.09
TR	129	1485	# 0 09	0 27	306	0 22
		1400	π 0.05	0.27	376	0.33
d						
L	23	1149	በ ብ2	0 27	306	0.08
		****	0.02	0.27	auc	0.08
TR	46	1554	0.03	0 27	414	0.11
		2001	0.03	0.27	414	O.II
	TR I L TR I TR I d	Lane Flow Rate Group (v) 1	Lane Flow Rate Flow Rate Group (v) (s) 12 1624 0 316 L 12 TR 360 3050 1 101 1624 0 776 L 101 TR 857 3086 3d L 31 1243 TR 129 1485 d L 23 1149	Lane Group Flow Rate Flow Rate Ratio (v/s) 12	Lane Group (v) Rate Flow Rate Ratio (g/c)	Lane Group (v) (s) (v/s) (g/c) (c) (c) (d) (e) (v) (s) (v/s) (g/c) (c) (d) (e) (d) (e) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e

Sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.43 Total lost time per cycle, L = 15.00 sec Critical flow rate to capacity ratio, Xc = (Yc)(C)/(C-L) = 0.51

Control Delay and LOS Determination

Appr/ Ratios Unf Prog Lane Incremental Res
Lane Del Adi Gro Factor Del Del

Lane		tios	Uni Del	Prog Adj	Lane Grp	Increm Factor		Res Del	Lane (Froup	Appro	oach
Grp	v/c	g/c	d1	Fact	Cap	k	d2	d3	Delay	LOS	Delay	/ Los
East	bound								··	· · · · · · · · · · · · · · · · · · ·		
L	0.03	0.62	8.2	1.000	429	0.50	0.1	0.0	8.4	A	-	
TR	0.29	0.41	17.7	1.000	1254	0.50	0.6	0.0	18.3	В	18.0	В
West	bound											
L	0.16	0.62	7.1	1.000	634	0.50	0.5	0.0	7.6	A		
TR	0.68	0.41	21.6	1.000	1269	0.50	2.9	0.0	24.5	С	22.8	С
Nort	hbound											
Ţ	0.09	0.27	24.8	1.000	331	0.50	0.6	0.0	25.4	С		
TR	0.33	0.27	26.5	1.000	396	0.50	2.2	0.0	28.7	C	28.1	С
Sout	hbound											
L	0.08	0.27	24.7	1.000	306	0.50	0.5	0.0	25.2	С		
TR	0.11	0.27	24.9	1.000	414	0.50	0.5	0.0	25.5	Ċ	25.4	С

Phone:

Fax:

E-Mail:

____OPERATIONAL ANALYSIS_____

CFD

Analyst: Agency/Co.:

Barr & Prevost

Agency/co..

Date Performed: 3/18/2008

Analysis Time Period: 7:30 AM-8:30 AM

US 50 and Meadowlark

Project ID: AM existing conditions

E/W st: Us 50

N/S St: Meadowlark/Wooster Pike

_____VOLUME DATA_____

	Ea:	stbou	nd	We	stbou	nd	l No.	rthbo	und	l So	uthbo	und H
	L	Т	R	L	T	R	L	T	R	Ī.	Т	R
1				l			١			J		
	11	285	59	191	765	11	128	14	202	21	16	35
% Heavy Veh		5	0	10	5	0	0	0	0	10	0	0 i
		0.90	0.90	0.90	0.90	0.90	10.90	0.90	0.90	10.90	0.90	0.90
PK 15 Vol	3	79	16	125	213	3	18	4	56	16	4	10
Hi Ln Vol							i			1	•	
% Grade		0		1	O		i	0			Λ	,
Ideal Sat	1900	1900		1900	1900		11900	1900		11900	1900	
ParkExist				1			i			1	200	1
NumPark				ĺ			i i			i		1 1
No. Lanes	1	2	0	1	2	0	i . 1	1	0	1 1	1	n 1
LGConfig	L	TR		L	TR		L	TR	J	L	TR	· · · · · · · · · · · · · · · · · · ·
Lane Width	12.0	12.0		112.0	12.0		12.0			12.0]
RTOR Vol (20	İ		5			100	1 1 2 . 0	12.0	10
Adj Flow	12	360		1101	857		31	129	200	123	46	10 [
%InSharedLn				I			- -	107		1 2 3	-1.0	1
Prop LTs	1.000	0.00	0	1.000	0.00	3 D	11.000	ות תו	nn	11.000	1 0 00) I
Prop RTs		119			.008		•	. 876	30	•	, 0.00 609	, ,
Peds Bikes				, o.			, o.		1	•	609	- 1
	0	2		10	2		10	0	,	0	_	!
%InProtPhase	_			0.0	_		ı V	v		10	0	ļ
Duration	1.00		Area '	,	מפט	or cim	1 :1			i		1
				٠ تارو،	ט עניי) T 12 17 111	TIGT					

OPERATING PARAMETERS_____

 I 	Eastbound T R	We	stbound T R	No L	rthbound T R	i So L	uthbound T R
Init Unmet 0.	0.0	10.0	0.0	10.0	0.0	-¦ 	0.0
Arriv. Type 3	3	13	3	13	3	13	3 1
Unit Ext. 3.	0 3.0	[3.0	3.0	13.0	3.0	13.0	3.0
I Factor	1.000	İ	1.000	i	1.000	1	1.000
Lost Time 2.	0 2.0	12.0	2.0	12.0	2.0	i2.0	2.0
Ext of g 2.	0 2.0	12.0	2.0	2.0	2.0	12.0	2.0
Ped Min g	3.2	I	3.2	1	3.2	j	3.2